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Abstract

This report describes work performed by the Collaborative Agent Design Research
Center (CADRC) over the past several years in the design and implementation of
collaborative, computer-based, decision-support systems, mostly for military
applications. In these systems multiple components, either program modules or separate
processes (i.e., software agents), cooperate with each other and human decision makers to
solve complex problems. The components are essentially of two types: knowledge-based
narrow domain experts that provide services to other agents (i.e., service-agents); and,
more autonomous agents (i.e., object-agents) that represent the interests of selected
objects in high level information representation schemas.

Based on the notion that all computer programs are essentially agents, the report traces
the evolution of  1st and 2nd Wave software from single agent, stand-alone decision-
support applications to integrated, collaborative, distributed, multi-agent decision-
support systems. Several multi-agent decision-support systems developed by the
CADRC over past years are described. These include: ICODES (Integrated Computerized
Deployment System) for ship load planning; CIAT (Collaborative Infrastructure
Assessment Tool) for facilities management; FEAT (Force Employment Analysis Tool)
for military planning and engagement coordination, and KOALA (Knowledge-Oriented
Object-Agent Collaboration) for architectural space planning.
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1.  Decision Systems: Background and Introduction

Decision-making is a problem solving activity that human beings undertake on a daily
basis in all of their endeavors. Although there are many definitions of decision making,
depending on the goals, beliefs, and current knowledge of the researcher (Frensch and
Funke 1995), it is generally agreed that decision making is a goal-directed activity that
involves a wide range of cognitive operations and that the specific process and strategies
employed by individual decision makers can vary widely.

The work of the Collaborative Agent Design Research Center (CADRC) described in this
Technical Report is specifically focused on 'complex problems' and computer-based
decision systems that are designed to assist, not replace, human decision makers in the
solution of these problems. We consider the relative level of complexity of a problem to
be a primary function of the number and strengths of the inter and intra relationships that
exist among internal and external components of the problem, and the degree of
uncertainty that surrounds the definition of these components. Typically, complex
problems involve many strong relationships among internal components as well as
important dependencies on external factors. The external factors may be determined by
events, the cause of which could be unrelated to the problem situation. For example, in
planning a counter offensive a military commander may have to consider not only the
many variables and their interrelationships that impact actual battlefield conditions (e.g.,
enemy and friendly forces positions and capabilities, battlefield terrain, weapon
capabilities and availability, weather, etc.) but also higher level political considerations on
both sides that may influence enemy actions and/or the ability of the commander to
execute his or her own strategies.

A more specific example of the dependency on external factors is a fairly common
occurrence in the logistical transportation field. Cargo specialists may spend up to two
man-days to design a cargo load plan for a ship, a complex undertaking that involves
many interrelationships among issues ranging from the trim and stability constraints of
the vessel, hazardous material segregation requirements, lift capabilities, to loading
sequences and stow area accessibility restrictions. External dependencies include the
availability of port facilities (e.g., mobile port cranes, electrical lighting for nighttime
loading operations, etc.), port traffic conditions that may impact the movement of cargo
from staging areas to the pier, labor relations that will influence loading operations, and
the arrival condition of the vessel to be loaded. The latter can vary significantly from the
expected. Such variations may range from the inoperability of specific ship equipment
(e.g., onboard cranes) to the amount and actual location of pre-loaded cargo. It is even
possible that the vessel that arrives at the port is not the vessel that was considered
during the planning stage. The factors that may have forced a change in vessels are likely
to be quite independent of the internal problem conditions. For example, the original ship
may have broken down in transit, or it may have been required for other purposes that
took precedence for reasons unrelated to either the destination of the cargo or the purpose
of the planned loading operation.
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As shown in this example, uncertainty in complex problems extends beyond the lack of
definition of the individual problem elements, such as hazardous material considerations
and stow area accessibility, to the relationships of these elements to each other and
external factors (e.g., replacement of the expected vessel with another vessel). In other
words, the dynamic information changes that are characteristic of complex problems tend
to modify, delete and create new relationships among both the internal elements and the
external dependencies of the problem situation. Even a relatively small change in one
element can trigger a series of major relationship changes that may essentially restructure
the entire problem. This interconnectedness of complex problem situations poses
particular difficulties to the human cognitive system, because it forces the decision maker
from the normal sequential paradigm into a parallel reasoning process.

Heightened expectations of quality, accuracy, execution speed, and responsiveness to
dynamically changing conditions are increasingly challenging the capabilities of human
decision makers in the many complex problem situations that they face in their varied
endeavors. It is therefore not surprising that mankind should be increasingly looking to
technology in the form of computer-based decision-support systems, for assistance. Such
assistance would appear to be appropriate and welcome in at least the following
functional areas:

1. To provide access to factual data that describe past and present conditions of
dynamically changing aspects of the problem situation (e.g., changes in enemy
positions, weather conditions, resource consumption, etc.).

2. To provide access to relatively static reference information (e.g., cost rates,
equipment characteristics, etc.).

3. To provide access to existing knowledge and specialized expertise in domains
that are relevant to the problem situation. This knowledge may range from
standard practices and procedures (i.e., prototype knowledge-bases (Gero et
al.1988, Rosenman and Gero 1993, Pohl and Myers 1994, Pohl et al. 1988)) to
rule-based sequences and strategies that are commonly applied by human
experts to similar problem conditions.

4. To assist in the analysis and fusion of information derived from multiple
sources for purposes of establishing and maintaining an accurate view of the
current state of the problem (i.e., 'situation awareness' in the military
environment).

5. To alert the human decision maker to possible conflicts and transgressions of
boundaries (i.e., violations), based on parameters that may be modified from
time to time.

6. To propose alternative solution strategies and identify opportunities for
pursuing specific directions.
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7. To provide explanations of how and why particular recommendations and
conclusions were generated by the components of the decision-support
system.

8. To learn from the interactions between the human decision maker and the
decision-support system the methods and strategies that the former employs
in particular problem situations, and to be able to apply these methods and
strategies in the absence or on the instructions of the human decision maker.

The human decision maker brings a complex interplay of many cognitive, motivational,
personal, and social factors into the human-computer partnership. Most of these factors
are poorly understood, being based on neuro-physiological, biological and behavioral
processes that are still largely undeciphered. This requires a great deal of flexibility to be
built into the user-interface so that the partnership can evolve in directions and
capabilities that cannot be predetermined at the outset.

1.1 The Importance of the Environment

One might wonder what an individual who has enjoyed the highest level of education at
the conclusion of the 20th Century could achieve, if he or she were to be transplanted to
some distant past such as the late Middle Ages (11th Century) or the early Renaissance
(14th Century). After some thought one would probably arrive at the surprising
conclusion that the potential for making a major contribution would be limited at best.
The ability to perform at a high intellectual and productive level, particularly in technical
areas where this individual may function most effectively today, is largely dependent on
the availability of a supportive infrastructure. In other words, to apply existing
knowledge and develop new knowledge in a particular field of expertise requires an
environment that provides appropriate tools, materials, information resources, and also
imparts a perceptible sense that such contributions are needed and welcome.

The problems of this transplanted individual would stem not so much from the absence of
an industry that can produce the tools, such as computers, that the individual may have
come to rely on for most of his or her daily endeavors, but more importantly from the
inadequacies of the available human interactions. In our society today complex problems
are typically solved, not by a single individual, but by the cooperation of several persons
with compatible objectives. In fact, much of the technological development in recent times
has been focused on optimizing the accessibility of human and other resources to the
individual.

In considering the time scale of evolution it can be argued that problem-solving success,
particularly in respect to the acquisition and application of expert knowledge, is greatly
accelerated by a supportive environment. It took over three billion years for homo
sapiens to evolve after single cell entities emerged from the primordial soup, some two
million years for the emergence of agriculture, only another 10,000 years for the invention
of writing, less then a few hundred years for industrialization (Dawkins 1987, Brooks
1990), and, a mere 40 years for computerization to affect virtually every aspect of our
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lives. It appears that our ability to interact with a dynamic environment allows us to
collectively achieve advances that are beyond the capabilities of the individual.

Equally supportive of these arguments is the notion that information is not stored in the
human brain in specific neuron templates, but rather 'evoked' through a state of the entire
nervous system (Wittgenstein 1953, Dreyfus and Dreyfus 1988, Maturana et al. 1960,
Winograd and Flores 1987). Analogously, if we consider the individual as an agent
cooperating within an environment of many agents, it would appear reasonable that the
collective intelligence of the environment exceeds that of the individual. This hypothesis
is indeed supported by recent work dealing with the dynamic behavior of computer-based
agents interacting in a computational ecology (Huberman and Hogg 1988). It has been
shown that in such systems the cooperative interactions among agents operating in
different task domains can lead to the improved performance of the system as a whole.
Such gains are measurable, for example, in situations where multiple agents conduct
database searches in parallel for information items that can satisfy certain constraints. The
overall search time is determined by the agent that finds an acceptable answer first,
thereby terminating the concurrent searches of the other agents.

Huberman (1991) draws attention to the fact that this characteristic of large cooperative
systems to achieve a higher level of performance than could be predicted on the basis of a
detailed analysis of their component tasks has been observed in a fairly wide range of
applications (Aitchison and Brown 1957): such as research productivity (Schockley
1957); economics (Montroll and Shlesinger 1982); and, ecological diversity (Krebs 1972).

1.2 The Influence of Intuition and Emotions

The ability to analyze problem situations, reason about solution strategies, and develop
one or several alternative courses of action is a fundamental human cognitive skill.  This
skill has and will continue to evolve as human beings interact with their environment and
challenge themselves to understand, predict and control phenomena and events of
increasing complexity.

In this environment complexity is a function of the many interrelationships that influence
the nature and behavior of the factors that we identify as being pertinent to a given
situation.  In fact, the process of making decisions is mostly concerned with unraveling
these interrelationships, a task that is pervaded by difficulties.  First, there is a need for
establishing some solution objectives to provide a direction for determining priorities and
an orderly sequence of actions.  However, the ability to establish objectives presupposes
at least some level of understanding of the problem situation.  In other words, at least the
vestige of a conceptual solution, even if only in terms of an intuitive feeling about the kind
of solution that is likely to eventuate, will be formed by the decision maker during the
earliest stages of the solution process.  The existence of this conceptual solution is both
advantageous and disadvantageous.  

An early conceptual solution is helpful and arguably an essential prerequisite for defining
the framework within which explorations of the problem situation and the decision
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making process at large, will proceed.  Without such a framework, in the realm of
spontaneous, unsystematic explorations of aspects of the problem, the human cognitive
system tends to perform unevenly and unpredictably at best.

While there is much historical evidence that the early formulation of a conceptual solution
can be the decisive factor in the realization of a timely final solution, there are also
outstanding examples to the contrary.  Early commitment to a solution path can introduce
biases and misconceptions that will lead to contrived solutions that become weaker and
weaker as more and more information about the problem situation becomes available.  The
decision makers are faced with a dilemma:  discard the original concept, or modify an
increasingly flawed concept to bring it into closer alignment with the perceived situation.
Political and emotional factors from both outside and within the problem solving team
will inevitably emerge to fuel the dilemma.  A well known example of such a problem
situation was the insistence of astronomers from the 2nd to the 15th Century, despite
mounting evidence to the contrary, that the heavenly bodies revolve in perfect circular
paths around the earth (Taylor 1949).  This forced the astronomers to progressively
modify an increasingly complex geometric mathematical model of concentric circles
revolving at different speeds and on different axes to reproduce the apparently erratic
movement of the planets when viewed from Earth.  Neither the current scientific
paradigm nor the religious dogma of the church interwoven within the social environment
allowed the increasingly flawed conceptual solution of Ptolemaic epicycles to be
discarded.  Despite the obviously extreme nature of this historical example, it is worthy
of mention because it clearly demonstrates how vulnerable the rational side of the human
cognitive system is to emotional influences.

This does not mean that it would be best to strive to remove the human element
altogether from decision making systems.  On the contrary, particularly in complex
problem situations where there tends to be a significant element of uncertainty, human
intuition and emotions are not only desirable but often necessary ingredients of a
successful outcome.  In any case, for valid reasons, human beings are unlikely to trust
themselves completely to the decisions made by machines for many years to come, if
ever.

A second difficulty that faces problem solvers as they attempt to identify
interrelationships is their inability to fully define the problem.  The problem situation is
likely to include factors that are unknown at the time when a solution is desired.  This
means that parts of the problem are not understood and in particular, that the
relationships among these parts and the known parts of the system cannot be explained.
Still worse, these unknown factors will influence other apparently 'known' relationships
with misleading results.  In other words, the decision makers may believe that they
understand certain relationships but are in fact misled by the influence on these
relationships of other unknown factors. One can argue that it is an intrinsic characteristic
of complex problems that they are never fully defined, nor are they ever fully solved,
because they constantly mutate as the issues and forces that feed them change.   
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1.3  The Role of Leadership

Historically, in the field of management, decision-making has been exercised within a
framework of hierarchical authority. It was held, and this continues to be a somewhat
fundamental notion in corporate, government and military organizations, that important
decisions can be made only by persons who have the authority to make such decisions.
This authority is typically vested in position, rank, and ownership, on the a priori
assumption that knowledge and problem solving abilities are demonstrated prerequisites
of persons attaining such stature.

On closer examination this would appear to be a rather simplistic and limiting view of the
real world. This notion of decision-making places an emphasis on process with the
objective of exercising control over both the contribution of the participants and the
tempo of the problem solving activities.  It implies a deep-seated fear that errors in
judgment introduced at the lower levels of the hierarchy can easily and decisively mislead
the general direction of the solution path.  It further suggests that the decision-making
process itself should be hierarchical in nature.  Neither of these contentions would appear
to be valid. First, due to the continuous information changes that are characteristic of
complex problems, there is a need to maintain a high level of responsiveness and
openness. While the information changes may enter the system from any direction, they
are more likely to be detected at the operational levels first and then percolate through to
the management levels.  However, management has a tendency to suppress these changes
when they negate or interfere with the current view of the situation or run counter to a
predetermined course of action.  

Second, the hierarchical structure itself seriously constrains the initiative and contribution
potential of the lower levels.  Yet these operational levels are normally closest to the
source of the information changes that drive the decision-making process and are therefore
in a good position to interpret and judge the relevancy of their observations. Third, a
hierarchical decision-making process is by its very nature designed to control the vertical
flow of information.  The information channels are typically laid out in pipeline fashion
on the assumption that the information flow will be progressively filtered and reduced in
volume toward the upper echelons of the pyramid.  This is necessary to avoid
communication bottlenecks at the highest level where the decisions will be made.
Unfortunately, in practice, the opposite usually occurs.  For example, during military
operations commanders tend to be overwhelmed by the shear volume of information that
competes for their attention.  The lower levels, being mainly authorized to collect and
pass on information rather than analyze and interpret what they collect, will be reluctant
to exercise initiative in case their actions will contravene the chain of command.

In this environment information is viewed as a commodity that is 'owned', to be made
available on a limited basis typically only when the owner is directed to do so.  Under
these circumstances information tends to flow:  upward, mostly on request and when the
owners feel that their objectives will be served without jeopardizing their status and
position in the hierarchy;  downward, based almost exclusively on directions and
authorizations received from above, mostly in support of execution orders;  and laterally,
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within a network of domain specific activities that is often governed predominantly by
informal relationships.  Clearly in this model the information flow is severely restricted
by the organizational structure.  The hierarchical model places paramount importance on
organizational leadership, on the assumption that the problem exists mainly for the
organization and that the problem solving objectives are therefore subservient to the
objectives of the organization.  In fact, this assumption is difficult to defend.  Usually
organizations, whether commercial, government or military, exist for the purpose of
serving and/or protecting the welfare and interests of others.  It therefore follows that the
objectives of the organization should be subservient and adaptable to the needs of the
problem situation.  The structural notions of organizational leadership and information
ownership are relevant to the problem situation only to the extent that they facilitate the
solution of the problem.

More relevant to decision making in complex problem situations is the notion of
situational leadership.  The need for this kind of leadership arises whenever any of the
participants in a problem-solving task see an opportunity for actions that will accelerate
the completion of their own tasks and/or contribute to the tasks of others.  In this respect
situational leadership assumes a non-hierarchical cooperative operational structure in
which the participants collaborate freely within the existing organizational levels.  Under
these circumstances the purpose of organizational leadership is to support and not to
dictate the problem solving process; to remove obstacles and empower the individual
problem solvers, rather than control their participation and the tempo of their
contributions. In particular, the role of the organizational leadership is to prevent anarchy
by guiding the situational leaders toward consensus. Naturally each situational leader
cannot be the sole judge as to his or her contributions to the tasks of others. However,
situational leadership is akin to initiative and should be encouraged to occur at any node
of the problem system regardless of the organizational position or level of the person
exercising the initiative.  It is a spontaneous response to the current state of the problem,
as viewed from a particular node that maximizes concurrent problem solving activities.

Problem solving is a collaborative activity that dynamically develops its own supportive
structure in direct response to the current needs, restrictions and opportunities of the
problem system.  To constrain this decision-making activity within the rigid framework
of an hierarchical organizational structure inhibits those human capabilities, such as
exploration, experimentation, initiative and intuition, that have been found to be among
the most effective problem solving skills.  Typically, the evolving structure assumes a
flattened network configuration with both nodes and inter-node communication channels
appearing and disappearing spontaneously, driven almost entirely by the changing context
of the problem situation.  In this network the relative strengths of relationships and the
relative importance of nodes changes readily in response to factors that are largely
independent of any predetermined organizational leadership structure. Schmitt (1997), in
discussing maneuver warfare, presents strong arguments in favor of asynchronous
military operations in which the various components of an operation are not
synchronized to occur in a predetermined order (i.e., in unison). He presents the example
of a soccer team, "... 11 players, each with assigned responsibilities but acting
independently..." as the situation on the field offers and demands. While there are preset
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plays and team strategies "...the players react individually to the ball, and yet somehow
the result is that they manage to work together as a team".

1.4  Guiding Principles for the Design of Decision-Support Systems

 Based on these introductory comments and our experience with the design and
implementation of decision-support systems over the past decade, we have identified the
following general guiding principles.  These evolving principles have and will continue to
serve as a framework for most of the work of the CADRC and are therefore reflected to
some degree in all of the systems described in this report.

1.4.1  Emphasis on Partnership

A successful decision-support system is one that assists rather than replaces the human
decision maker.  Human beings and computers are complementary in many respects.  The
strengths of human decision makers in the areas of conceptualization, intuition and
creativity are the weaknesses of the computer.  Conversely, the strengths of the computer
in computation speed, parallelism, accuracy and the persistent storage of almost unlimited
detailed information are human weaknesses.  It therefore makes a great deal of sense to
view a decision-support system as a partnership between human and computer-based
resources and capabilities.  Automation should be restricted to the monitoring of problem
solving activities, the detection of conflicts, and the execution of evaluation, search and
planning sequences.

In this partnership a high level of interaction between the user and the computer is for
several reasons a necessary feature of the decision-support environment.  First, it allows
the user to assist the computer in the recognition and interpretation of the real world
object representation that forms a basis of any meaningful communication between the
user and the computer.  Second, it provides opportunities for the user to guide the
computer in those areas of the decision-making process, such as conceptualization and
intuition, where the skills of the user are likely to be far superior to those of the
computer.  Particularly prominent among these areas are conflict resolution and risk
assessment.  Third, it establishes a readily available channel through which the user can
enter new and modify existing information as desired to maintain a high level of
spontaneity in the partnership.

1.4.2  Collaborative and Distributed

Complex problem environments normally involve many parties that collaborate from
widely distributed geographical locations and utilize information resources that are
equally dispersed.  The decision-support system can take advantage of the distributed
participation by itself assuming a distributed architecture.  Such an architecture typically
consists of several components that can execute on more than one computer.  Both the
information flow among these components and the computing power required to support
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the system as a whole can be decentralized.  This greatly reduces the potential for
communication bottlenecks and increases the computation speed through parallelism.

Another advantage of the distributed approach is the ability to modify some components
of the system while the system as a whole continues to operate with the remaining
components.  Similarly, the malfunction or complete failure of one component does not
necessarily jeopardize the entire system.  This is not so much a matter of redundancy,
although the distributed architecture lends itself to the provision of a high degree of
redundancy, but rather a direct result of the physical independence of the components.
While the components may be closely integrated from a logical point of view they can
operate in their own autonomous physical environment.

1.4.3  An Open Architecture

The high degree of uncertainty that pervades complex problem environments extends
beyond the decision-making activity of the collaborating problem solvers to the
configuration of the decision-support system itself.  The components of the system are
likely to change over time, through modification, replacement, deletion and extension.  It
should be possible to implement these changes in a seamless fashion through common
application programming interfaces and shared databases.

Supportive of these concepts of an open architecture is an object representation that
allows the physically interfaced components to cooperate logically through the exchange
of information, requests and services.  The closer this object representation is to the real
world objects that the human decision makers reason about, the more effective the
communication among the components and the more intelligent their collaborative
assistance will be.

1.4.4  Tools, not Solutions

The decision-support system should be designed as a set of tools rather than as solutions
to a predetermined set of problems.  The indeterminate nature of complex problems does
not allow us to predict, with any degree of certainty, either the specific circumstances of a
future problem situation or the precise terms of the solution.  Under these circumstances
it is far more constructive to provide tools that will extend the capabilities of the human
decision-maker in a highly interactive problem-solving environment.

In this sense a tool is defined more broadly than a sequence of algorithms, rules or
procedures that are applied largely on the direction of a user.  Tools such as software
agents can be self-activating, be capable of at least semi-autonomous behavior, and
cooperate with each other and users in requesting and providing services.  They are
employed by each other and users to construct problem solutions to situations that
change dynamically and rarely follow predetermined patterns.
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1.4.5  High Level Representation

The ability of a decision-support system to have some level of understanding of the
meaning of the information it processes is the single most important prerequisite for a
collaborative problem-solving environment.  A high level representation of the real world
objects that define the problem system forms the basis of the interactions between the
users and the system and, also, the degree of intelligence that can be embedded in its
components.  For example, it is virtually impossible to build a useful computer-based tool
that can provide meaningful assistance to military commanders in the analysis of the
physical battlefield if the battlefield terrain is represented in the computer in terms of 'x,y'
coordinates and pixels.  To the commander the battlefield consists of real world objects,
such as mountains, roads, rivers, trees, observation posts, buildings, and so on.  Each of
these objects has attributes that determine its behavior under certain conditions.  These
semantic descriptors form the basis of collaboration among human problem solvers, and
are likewise the fundamental unit of communication in a computer-based decision-support
environment.

Without an internal high level object representation there can be no partnership between
user and computer.  Instead the computer is limited to the performance of mundane data
processing and visualization tasks, while all of the reasoning activities become the sole
province of the human decision makers.

1.4.6  Embedded Knowledge

The decision-support system should be a knowledge-based system.  In this context
knowledge can be described as experience derived from observation and interpretation of
past events or phenomena, and the application of methods to past situations.  In other
words, we gain knowledge through our experiences with the surrounding environment and
our desire to influence our destiny.

Knowledge bases capture this experience in the form of rules, case studies, standard
practices, and typical descriptions of objects and object systems that can serve as
prototypes.  Problem solvers typically manipulate these prototypes, in several different
ways (e.g., adaptation, refinement, mutation, analogy, and combination) as they apply
them to the solution of current problems (Gero et al. 1988, Rosenman and Gero 1993).
Although knowledge is by definition predetermined it plays an important role in human
problem solving.  New problem situations are rarely if ever, unrelated to past experiences.
Therefore, we use our knowledge of past similar situations as a baseline for defining the
current problem system and developing a solution strategy.

1.4.7  Decentralized Decision Making

The decision-support system need not, and should not, exercise centralized control over
the decision-making environment.   Much of the decision-making activity can be localized.
For example, components of the system (e.g., mentor agents (also referred to as object
agents)) that are responsible for pursuing the interests of real world objects, such as
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soldiers in military applications and technical and management personnel in commercial
and industrial applications (Pan and Tenenbaum 1991), can achieve many of their
objectives through service requests and negotiations that involve only a few nodes of the
problem system.  This greatly reduces the propensity for the formation of
communication bottlenecks and at the same time increases the amount of parallel activity
in the system.

The ability to combine in a computer-based decision-support system many types of
semi-autonomous and autonomous components (i.e., software agents), representing a
wide range of interests and incorporating different kinds of knowledge and capabilities,
provides the system with a great deal of versatility and potential for problem solving to
occur simultaneously at several levels of granularity.  This is similar to human problem
solving teams in which individual team members work concurrently on different aspects
of the problem and communicate in pairs and small groups as they gather information and
explore sub-problems.  However, whereas a decision-making environment that includes
only human problem solvers is limited to the agent granularity of a single person, the
computer-based decision-support system can add to this environment agents that
represent elements of the problem system itself.

1.4.8  Emphasis on Conflict Identification

The decision-support system should focus on the identification rather than the automatic
resolution of conflicts.  This guiding principle gains in importance as the level of
complexity of the problem system increases.  In very complex problem situations, with
many interrelationships, the resolution of even seemingly mundane conflicts can provide
subtle opportunities for advancing toward solution objectives. These opportunities are
more likely to be recognized by a human decision maker than a computer-based agent.

The identification of conflicts is by no means a trivial undertaking.  It includes not only
the ability to recognize that a conflict actually exists, but also the determination of the
kind of conflict and the relationships that appear to have precipitated the conflict.
Tracing these relationships may produce more progress toward a solution than the
resolution of the conflict itself.  Certainly, automatic resolution of the conflict will greatly
diminish the opportunity to explore the conflict situation as a means of gaining a better
understanding of the problem system.

1.4.9  The Computer-User Interface

The importance of a high degree of interaction between the user(s) and the various
components of the decision-support system is integral to the majority of the guiding
principles described in this section.  This interaction is facilitated by two system
characteristics:  a high level object representation; and, an intuitive user-interface.  The
representation requirements, based on the need for the system to be able to communicate
with the user in terms of real world objects that are germane to the problem situation,
have already been mentioned in the context of other guiding principles.
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There are several facets of the user-interface requirements that should receive attention in
the design of a decision-support system.  First, the user-interface should be graphical in
nature.  The human cognitive system excels in pattern matching.  Words and numbers
require the performance of a translation task that is relatively time consuming, subject to
information loss, and carries with it the potential for confusion and misinterpretation.
Textual and numerical information should be available to the user on request, whenever a
detailed level of precision is desired, but should not be the normal interface mode.  

Second, the user should be able to enter instructions and information into the system in a
manner that is not tedious.  Generally, much headway has been made in this respect in
recent years with the introduction of pointing devices and window systems.  The
selection of options provided by the system, rather than keyboard entry, should extend
beyond options and functions to prompted information alternatives automatically
extracted from knowledge bases and databases.

Third, an on-line help system should be available to both assist the user in the execution
of operational sequences and provide explanations of system activities.  The latter should
include exploration of the recommendations, evaluation results and proposals contributed
by the various components (e.g., agents) of the system.  The more sophisticated the
capabilities of these components the more important the explanation facilities are to the
problem solving environment.  In fact, they become a prerequisite for sustaining a
productive partnership between the human decision maker and the computer-based
assistance components. Furthermore, the on-line help system should be context sensitive.
In other words, the help system should provide explanations that are relevant to the
specific functional sequence that the user is attempting to perform and for which
assistance has been requested.

1.4.10  Functional Integration

In the past it has been considered helpful, as a means of simplifying complex problems, to
treat planning and execution as distinct activities. Under this school of thought the
purpose of planning is to clearly define and analyze the problem, and then develop a
solution as a course of action that can be implemented during the execution stage.
However, as the complexity and tempo of problem solving situations increases, these
apparently distinct functional areas can no longer be categorized as discrete operational
spheres of activity.  They tend to merge into a single integrated functional pool of
capabilities from which the human decision maker draws assistance as necessary.  In such
problem solving situations continuous information changes require constant replanning,
even during those phases when the need for action and execution overshadows all other
activities.

This is particularly apparent in the military field, but equally relevant in management,
marketing and manufacturing situations where changing conditions require the most
thorough and carefully laid out plans to be spontaneously reformulated.  For example, in
military missions the impacts of enemy actions dictate the need for continuous replanning
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and training during execution. As experienced military commanders are often heard to say
“… there is one thing that is certain under combat conditions, as soon as the first shot has
been fired the battle plan is going to change.”  Under these conditions functional
integration is essential.  Not only must the planning functions be accessible from the same
computer system, but they must be able to operate on the same information that applies
to the execution functions.  Much of this information may have been generated in the
execution environment and therefore constitutes new information.  This in itself dictates
the need for replanning, since there is every likelihood that the new information has
rendered at least some of the predetermined execution plans obsolete.  

Similarly, in the construction and manufacturing fields changing production conditions
such as equipment failures and material supply delays may require significant
modification of the original design that may border on a complete redesign.  These design
modifications have to be accomplished while production operations, which cannot be
halted or postponed, are in progress.  Under these circumstances, design and production
functions cannot be treated as discrete operations each with its own set of data,
performed in relative isolation from one another.  In fact, at that time, the data that
describe and are at least partially generated by the production environment are likely to be
more relevant to the redesign activities than the original design data.  It is therefore of
critical importance that the planning and execution environments are logically integrated
and driven by the same data flow.

In a distributed, collaborative decision-support system architecture the necessary level of
integration has the potential to be achieved, since functional modules and information
resources are treated as sharable components.  In such a shared environment distributed
databases may be accessed by any of the functional components whenever the need arises
and the necessary authorizations are available.  The ability to switch from one functional
mode to another then becomes largely a function of the user-interface and does not require
the user to move out of the current application environment.  In other words, the physical
separation of individual computer-based components need not exist at the logical level of
the user-interface.

1.4.11 Learning Capabilities

The ultimate aim of a closely-knit user-computer partnership is to create an environment
in which the human and machine contributions are not only complementary, but are also
relatively equal in value.  For this aim to be achieved one would expect the machine to
exhibit at least some semblance of a learning capacity.  How realistic is this aim?  If we
define learning as the ability to develop a problem-solving capacity that is not based
solely on predetermined solution methods but evolves progressively from a combination
of new and old experiences, then this aim would appear to be achievable.  This is
particularly true if we allow the user to assist the computer in its learning endeavors, a
proposition that is entirely consistent with the notion of partnership.

To qualify under this definition of learning the computer-based components of the
decision-support system would need to be able to adapt existing knowledge and apply
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the modified knowledge successfully to the solution of problem situations that contain
some new elements.  However, throughout this endeavor the computer would be able to
interact with the user and count on the assistance of the user in two important areas:  to
interpret the problem situation; and, to select a potentially useful problem-solving
strategy.  By initially monitoring the actions of the user and storing this second-hand
experience, the computer should be able to progressively take an increasingly more active
role as a problem-solving partner.  It stands to reason that as the computer's knowledge
base of combined (i.e., user and computer) experience grows, the ability of the computer-
based components to assist the user in the solution of future problems with novel
elements should likewise increase.  Such an increase would certainly be considered
'learning' in human subjects, and should therefore also qualify as a learning capability in
the computer-based environment.

What is being suggested here is that there are categories of learning, and that it is possible
with current computer capabilities to achieve some lower levels of learning that depend
largely on acquiring existing knowledge rather than creating new knowledge. However, it
must be noted that there is no a priori reason that can allow us to assume that lower level
learning abilities will eventually evolve into those higher level intuitive learning
capabilities that are currently the exclusive domain of human cognition. In other words,
whether or not computer-based systems will eventually be able to compete with human
decision makers in the realm of intuitive understanding and thinking cannot be predicted at
this time.   
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2.  Agents: Thoughts on the Evolution of Computer Software

It can be argued that technical advances in the 20th Century that have led to the
availability of electronic computation devices and the interconnection of these devices in
information processing networks, are entirely consistent with historical patterns of
human evolution.  Throughout history an outstanding feature of mankind has been the
ability of individuals to leverage their limited capabilities and increase their chances of
survival through both technical extensions and cooperative endeavors.  For example,
instead of facing the inherent uncertainties and dangers of hunting, man developed
methods for growing the food that was essential for survival.  Success in this endeavor led
to the need for cooperation as individuals were able to produce a great deal more food
than they required for their own consumption.  The storage and distribution of these
agricultural products contributed significantly to the development of cooperation,
coordination, and planning capabilities in the individual, and increased the propensity for
groups of individuals to collaborate toward community goals.

During the Industrial Age, man focused on the manufacture of large quantities of material
products that could serve as tools and components for the construction of more complex
mechanisms and assemblies such as motors, clocks, rail cars, ships, and buildings.
However, by far the majority of these devices and artifacts were aimed directly at
extending man's physical capabilities in endeavors such as transporting, building,
measuring, fighting, and mining.  While this naturally led to significant increases in
knowledge and success in intellectual endeavors, the primary objectives were nevertheless
focused on material rather than intellectual gains.

It is not surprising that the next major thrust of human endeavor should be directed to
computation and information processing.  Both of these are cognitive capabilities that
appear to be at the core of man's dominant and controlling position among living
creatures.  Although the initial interests in the development of computer technology were
focused on mathematical capabilities, particularly in respect to military and navigational
applications (Slater 1989, Kurzweil 1992), this focus soon shifted to the broader spheres
of information processing and resource sharing.  Today, computer power and capabilities
are primarily directed to support man's quest for acquiring and applying information, and
only secondarily to the manipulation of numbers and the solution of mathematical
equations.

The startling advances in computer hardware that we have seen over the past 25 years
have been an essential prerequisite for the emergence of the electronic computer as an
extension of the intellectual and cognitive capabilities of the human user.  However, the
tenfold increase in computer power every five to seven years (Barstow 1987, Kurzweil
1992) has been increasingly distributed to support individual computer users rather than
centralized to serve larger groups of users in a shared environment. Microcomputer
technology emerged as a means of maximizing local processing power in support of local
decision-making. It is interesting to note that the microprocessor has approximately
doubled its performance every 18 months, since its invention in the 1970s. In 1996 the
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microprocessor became the computer with the fastest clock speed (i.e., 500 MHz),
exceeding the clock speed of the Cray supercomputer (Patterson 1996).

The use of the computer as an extension of human cognitive capabilities requires the
processing of large quantities of information in the form of databases containing factual
information, knowledge bases containing factual data and the relationships among those
data, and rule-bases that allow the machine to reason about this knowledge in parallel with
the user.  To perform such information intensive functions within reasonable response
time expectations computer workstations must be able to execute millions of instructions
per second in a multi-tasking operational environment and have access to millions of
bytes of high-speed random access memory.

The emphasis on information processing has been accompanied by an equally strong
desire to share knowledge among widely dispersed users with similar information
interests and needs.  This is a trend that is currently leading to an unprecedented level of
collaboration and coordination among groups of persons, ranging from formal alliances to
loosely knit common interest associations.  In this networked world of human
cooperation the level of sophistication and potential complexity of the interrelationships
that can arise spontaneously, or be purposely nurtured by collaborating individuals will
challenge the capabilities of the users.  Under these circumstances the user will
increasingly look to the machine for intelligent assistance. We are, in effect, replacing the
computer architecture concept of a single central processor with distributed systems
involving a large number of workstations working in parallel.  The ability to harness the
full capabilities of such loosely coupled information processing configurations depends on
the availability of a new generation of system software.  The required operating systems
need to be as much communication facilitators as they are managers of the widely
dispersed heterogeneous computing resources under their control.  At the very least they
must provide a high degree of reliability in executing the requested processes (e.g., ISIS
(Birman and Marzullo 1989)), automatically select the host machines to optimize the
computation (e.g., Plan-9 (Pike et al. 1990)), and provide fail-safe inter-process
communication facilities (e.g., PVM (Sunderam 1990)).

2.1  The Distributed Cooperative Computing Environment

The initial benefit to the user from computer connectivity has been ready access to
information, both in terms of person-to-person communication (i.e., electronic mail
systems) and database resources (e.g., libraries, as well as business and government data).
In terms of software applications, such as office management, simulation of decision-
making sequences, and the automation of design and manufacturing functions, the
developments have been less startling. Unfortunately we are still supporting many legacy
software systems today that consist of large, single process, computer programs with
predefined access paths to their data needs. Considerable difficulties are encountered
whenever the output from one program should become the input to another program.
These difficulties are related not only to differences in data formats, but are an intrinsic
property of the very nature of the underlying program design. It can be argued that these
programs are intended to provide solutions to known problems in a prescribed fashion
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and are, therefore, designed to accomplish a predefined set of functions in a largely
sequential fashion with little or no flexibility for deviating from the predetermined
solution path. In other words, they contain ready-made solutions rather then tools that
can be employed by the user to develop solutions at the time a problem arises.

The inherent weakness of this approach is the fact that the problems that are of real
interest and importance are typically those that were not predicted beforehand or that do
not precisely follow the template of the predicted problem model. The outcome of this
mismatch depends on the degree of divergence between the actual problem situation and
the predefined solution sequence, ranging from a reasonably good result to one that is
totally unacceptable. A particularly dangerous aspect of this approach is that it can
mislead the user, particularly the novice user, into making decisions on the basis of an
erroneous result produced by a computer program that has previously (i.e., under
different circumstances) provided useful results.

Human decision makers solve problems through a learning process that depends on
cooperation, the ability to assemble lower level knowledge into higher level knowledge,
and the freedom to evaluate partial solutions through testing and experimentation. In this
sense the real world is a distributed network of information sources, cooperating agents,
coordination protocols, and solution strategies. This is a highly interactive environment in
which self-determination and cooperation, together, produce achievements that transcend
the capabilities of the individual. Distributed computing systems are able to emulate and
extend this kind of cooperative problem-solving environment. By linking information and
computing resources, by providing means for multiple computer-based agents to interact
with each other and human users, and by allowing these activities to occur in parallel,
such computer networks can significantly elevate the problem-solving capabilities of
human groups and organizations.

However, a new kind of software is required to realize these potential capabilities.
Typically, a distributed software application consists of multiple processes, some acting
as semi-autonomous agents endowed with capabilities for exercising a degree of self-
determination, and others serving as facilitators with largely predefined functional
capabilities. The ability to communicate is as important in the distributed computing
environment as it is in the real world.

2.1.1  Communication Facilities

Rather than duplicate communication facilities at different software levels within the
distributed computing environment it seems appropriate to provide a distributed
communication facility that can be used for all purposes.  Such a distributed information-
serving facility is likely to provide a higher degree of integrity and reliability, or at least
provide those features without duplication. In this respect duplication must not be
confused with redundancy, which is a function of the communication paths and their
control rather than the communication interfaces that are embedded in the applications.
Redundancy is, of course, not only desirable but necessary to ensure a high level of
reliability.
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A shared communication facility will support a number of universal activities, such as the
ability to broadcast messages to multiple agents, to identify all agents by asking the
facility about its clients, and to monitor and maintain process integrity. More specifically,
the communication and event management facilities required in support of a distributed
computing environment exist at both the logical and physical levels (Myers et al. 1993).
Logically, the underlying communication facility must allow its clients to communicate
with each other through object-oriented messages. Clients should be able to use any type
of object as an inter-client message without content transformation. Further, client
application environments should be able to define and manipulate their own set of
objects, both statically and dynamically. Physically, clients should be able to function
without knowledge of the operational characteristics of their counterparts (Elmasri and
Navathe 1989). Such characteristics include the current state of execution and the physical
site location.

Client authorization is another important requirement. Each application should be able to
define and manage its own authorization of privileged facilities. This external
authorization must work in conjunction with the underlying authentication and security
mechanisms provided by the communication system (Pohl 1995). Furthermore, clients
should be notified of pending events in real-time (Durfee 1988). This is a critical
requirement for providing data validity and currency within the application environment.

2.1.2  Process Management Requirements

Apart from the underlying communication facilities, the distributed computing
environment requires substantial process management support. First, users should be able
to customize their application environment in terms of both the number and types of
agents that will contribute to the solution, and the optimum distribution of those
processes on the available machines. This assumes the availability of a high level interface
that can intelligently assist the user during the initial application configuration process
and, subsequently, whenever modifications are desired (Myers et al. 1993).

Second, there is a need for users to be able to save and restore the current state of their
own application environment. This is required not only to allow the user to continue
work from previous sessions, but also to experiment with several views of the same
problem during a single session. A save and restore facility will also support multi-user
work. One user should be able to save the state of the session, allowing other users to
utilize this saved state as a starting point for further work. To save the state of multiple
processes in a distributed environment, even if these processes are components of the
same application, is a fairly complex undertaking. The current state of the environment
includes not only the various parts of the system that contain data representations of the
evolving solution model and its context, but also the current state of agents (e.g., the local
fact list of an expert system). One approach for achieving this is to divide the application
system into 'saving' and 'non-saving' processes. All 'saving' processes are required to
incorporate save and restore facilities, and 'non-saving' processes are designed to operate
as initial invocations whenever they are called. Within the current state of software
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technology it would be acceptable to use a mechanism that can identify when no messages
are in transmission between components.

Within the next decade, as distributed cooperative systems become the architecture of
choice for the majority of integrated decision-support applications, the need to save and
restore the current state of an application will increasingly extend to large parts if not the
entire system. For example, in the military field it will become highly desirable for
commanders to be able to explore the multiple possible outcomes of mission plans with
the participation of all of the planning cells that will be found in an Extended Combat
Operations Center (ECOC). Today, such scenarios have to be played out in a largely
manual mode with limited computer-based assistance available from mostly stand-alone
simulation programs in each cell. Once these applications become part of an integrated
command, control, communications, computers and intelligence (C4I) system framework
commanders will see the opportunity for vastly extended computer war games. While the
technical implications of these user expectations are certainly formidable, there is no a
priori reason why they could not be achieved. What is required is the ability to save and
restore several applications in a distributed system environment. Each of these
applications may itself be distributed and is certainly likely to have many cooperative
intra-application and inter-system interactions in progress at the time that the current
state of the environment is required to be saved.

2.1.3  Explanation Capabilities

As the collaborative decision-support environment becomes more and more capable of
providing assistance, through the intelligence and knowledge that is embedded in its agents
and other components, there will be an increasing need for the system to be able to
explain why it has reached its conclusions. At the very least the agents should be able to
explain their behavior and results. In this regard retrospective reasoning is the most
common type of explanation facility found in expert systems today. Typically, such a
facility is capable of providing answers to WHAT, HOW and WHY questions.  A
WHAT question requires the explanation or definition of a fact. For example, in a
cooperative military decision-support system the commander may ask: What are the
mobility capabilities of the enemy unit located at Alpha NJ670900 (where Alpha is a
designated sector in the battlefield and NJ670900 indicates the precise location by
reference to map grid coordinates)?  Through the use of  'format templates' an agent can
collect the appropriate answers simply through template values when a match is made
with the facts (e.g., enemy, Alpha, NJ670900, mobility) contained in the question
(Myers et al. 1993).

A HOW question requires an analysis of the sequence of inferences that produced the
fact. Continuing with the above example, the commander may ask: How did the enemy
unit reach its present location?  A trace of the rule chains that fired to track the movement
and transportation capabilities of the enemy unit over time will provide the requested
explanation.  WHY questions are more complicated. They require reference to the
sequence of goals that have driven the sequence of inferences (Ellis 1989). In large
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collaborative systems many agents may have contributed to the inference sequence and
will need to participate in the formulation of the answer.

This third level of explanation has received considerable attention in recent years. It
typically requires a summary of justification components. For example: text summary
systems such as Frump (Dejong 1982) and Scisor (Jacobs and Rau 1988); fast
categorization techniques such as Construe (Hayes and Weinstein 1991); grammatical
inference (Fu and Booth 1975) which allows inductive operators to be applied over the
sequences of statements produced from successive justifications (Michalski 1983);
explanation-based learning (Mitchell et al. 1991); and, case-based reasoning (Shank 1990
and 1991, Kolodner 1993).

2.1.4  Coordination Strategies and Protocols

By far the most complex and challenging aspect of distributed, cooperative decision-
support systems is the control and coordination of the collaborating agents. Not only
must each individual agent know how it should most effectively apply its capabilities and
local resources, but the agents as a group must also coordinate their activities to maximize
the use of network resources. Similarly in human society, interaction among agents can be
highly productive or it can be a hindrance to the formation of any kind of useful
collaboration. The more complex the interdependencies among problem domains, the
greater the potential for cooperation and, conversely, for obstruction.

Protocols of coordination have been studied for more than a decade in the field of
distributed artificial intelligence (Chaib-Draa et al. 1992). A popular strategy is to
consider a distributed, cooperative decision-support system as a network of problem-
solving nodes that individually solve sub-problems and collaborate to integrate narrow
solutions into broader solutions. However, to be able to decide how to best collaborate,
the nodes require some knowledge of the global goals of the problem-solving system.

Durfee (1988) identifies four principal global goals of cooperation. The first of these goals
is to facilitate the completion of problem solution tasks through concurrent activities.
Typically, this entails decomposition, development of sub-solutions in parallel, and the
application of coordination strategies to minimize the length of time agents have to wait
before they receive contributing results from other agents. In addition, this first goal
implies the need for a strong emphasis on local problem-solving capabilities. The ability
of an individual agent to develop sub-solutions in a semi-autonomous manner, with regard
to but not controlled by the concerns of other agents, encourages solution alternatives and
communication selectivity.

The second goal focuses on cooperation. It proposes to maximize the potential for task
accomplishment through the sharing of resources (i.e., computing resources (CPUs),
information, skills, etc.). This goal suggests the need for agents to share predictive
information, to exchange tasks, and to assist each other in the testing and evaluation of
results. The opportunity for sub-solution verification by agents from several different
domains, each with its own knowledge, rules and prototypes, is of particular significance.



CADRC, Cal Poly, San Luis Obispo, CA 93407:  Technical Report CADRU-11-97 (Jan'97; 3rd Printing Apr’03)

27

The intent of the third goal is to increase the task completion success rate through
redundancy and experimentation with alternative solution procedures. Important tasks
might be assigned to multiple agents to maintain a high level of reliability even though a
local node may have failed. For example, a particular sub-problem might be assigned to
several agents that will attempt to solve the same task using different procedures,
knowledge, and delegation strategies. A simple application of this goal is the performance
of database searches to serve as a basis for providing a common set of information, by
multiple agents operating in parallel. As soon as one of the agents has retrieved the
required information the concurrent search efforts of the other agents are terminated.

Durfee's fourth goal proposes to minimize the potential for inter-agent interference
through the anticipation and avoidance of counter-productive interactions. Of particular
importance in this regard are the maintenance of a quasi real-time communication
environment, the ability of agents to recognize unnecessary and conflicting tasks, and
selectivity in respect to the messages that are sent to other agents or broadcast to the
system as a whole.

Conceptually, the protocols that are useful for coordinating a network of problem-solving
nodes in a distributed computing environment can be drawn directly from human
interactions. However, the implementation of these protocols in a computer-based
decision-support environment is a challenging undertaking. For the sake of simplicity we
could categorize the interactions of a human problem-solving team into two groups:
advisory services that are provided by individual team members in response to requests
for knowledge and opinions that fall into their domain of expertise; and, actions of team
members that are motivated by personal and global problem-solving objectives.

Past implementations of multi-agent decision-support systems have focused primarily on
the first category of interactions. In these systems agents typically represent narrow
domains of expertise and are designed to react to requests for services pertaining to these
domains. For example, a Weather agent capable of analyzing changes in weather
conditions would be called upon by other agents or users to provide weather forecasts
and interpret the likely impact on a given situation of specific weather related factors.
Cast in this role as a domain expert the Weather agent has no interest in promoting the
importance of weather considerations in the overall development of the problem solution.
That issue, which may be of paramount importance to the final outcome, becomes the
responsibility of the conflict resolution components of the system. At that level the
'weather element' has lost its autonomy and becomes just another issue that will be
weighed with other factors as the system attempts to reach a consensus.

Although such systems constitute a significant advance over fragmented simulation-type
decision-support systems, they nevertheless represent only a limited implementation of
the human interaction model. They place a considerable burden on those system
components that are required to coordinate the sub-solutions that are received from the
various domain experts. By and large these coordination components have to rely on
mathematical weighting schemes and user interaction to resolve conflicting responses.
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Furthermore, once a decision has been made, future reevaluations of that decision depend
almost entirely on two factors: largely predetermined criteria for triggering the
reevaluation of a past decision that are embedded in the coordination components; and,
the ability of the user to recognize the need for reconsideration. What is clearly missing in
this design approach is the ability of the system to actively represent the interests of
individual problem domains even after a conflict resolution decision has been made;
namely, the second category of human problem-solving team interactions.  

One promising, emerging solution to this dilemma is to extend agent status beyond
knowledge domains (i.e., service agents) to factors and/or issues that are of fundamental
importance to the problem situation (Pohl et al. 1994). In this approach selected data
objects (e.g., mentor agents) such as soldiers in the battlefield, major components in
engineering design, or desirable solution attributes (e.g., stealth, speed, safety, economy)
are represented in the system by agents. These object-agents, endowed with
communication capabilities and knowledge of their own needs and objectives, are capable
of actively promoting their interests at any stage in the problem-solving process. Of
particular interest in this regard is the ability of such object-agents to request services
from domain experts, negotiate with each other, and interact with users. A prototype
system of this kind is described later in Section 9 of this report (Pohl 1996).

2.2  The Human-Computer Partnership

To look upon decision-support systems as partnerships between users and computers, in
preference to automation, appears to be a sound approach for at least two reasons. First,
the ability of the computer-based components to interact with the user overcomes many
of the difficulties, such as representation and the validation of knowledge, that continue to
plague the field of machine learning (Forsyth 1989, Thornton 1992, Johnson-Laird 1993).

Second, human and computer capabilities are in many respects complementary (Figures 1
and 2). Human capabilities are particularly strong in areas such as communication,
symbolic reasoning, conceptualization, learning, and intuition. We are able to store and
adapt experience and quickly grasp the overall picture of even fairly chaotic situations.
Our ability to match patterns is applicable not only to visual stimuli but also to abstract
concepts and intuitive notions. However, although the biological bases of our cognitive
abilities are massively parallel, our conscious reasoning capabilities are essentially
sequential. Therefore, human decision makers are easily overwhelmed by large volumes of
information and multi-faceted decision contexts.

As human beings we have great difficulty dealing with more than two or three variables at
any one time, if there are multiple relationships present. Under these circumstances we
tend to switch from an analysis mode to an intuitive mode in which we have to rely
almost completely on our ability to develop situation awareness through abstraction and
conceptualization. While this is our greatest strength it is also potentially our greatest
weakness. At this intuitive meta-level we become increasingly vulnerable to emotional
influences that are an intrinsic part of our human nature and therefore largely beyond our
control.  
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This emotional dependency also tends to make the human being somewhat unpredictable
and strongly resistant to change. Confidence in our ability to deal with complex and
critical situations is based to a large extent on our past experience of similar problem
situations. Change, by necessity, devalues this past experience and therefore reduces our
confidence to be able to successfully deal with the changed situation.  
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Figure 1: Human Abilities and Limitations   Figure 2: Computer Abilities and Limitations

The capabilities of the computer are strongest in the areas of parallelism, speed and
accuracy (Figure 2). Whereas the human being tends to limit the amount of detailed
knowledge by continuously abstracting information to a higher level of understanding, the
computer excels in its almost unlimited capacity for storing data. While the human being
is prone to making minor mistakes in arithmetic and reading, the computer is always
accurate. A slight diversion may be sufficient to disrupt our attention to the degree that
we incorrectly add or subtract two numbers. However, if the error is large we are likely to
notice that something is wrong further downstream due to our ability to apply conceptual
checks and balances. The computer, on the other hand, cannot of its own accord (i.e., at
the hardware level) distinguish between a minor mistake and a major error. Both are a
malfunction of the entirely predictable behavior of its electronic components.

However, at the software (application) level it is possible to provide a layer of automatic
reasoning capabilities (i.e., collaborating agents) served by an underlying information
model (i.e., ontology). Software with such embedded capabilities is able to draw
inferences leading to more sophisticated human-like conclusions.  

The differences between the human being and the computer are fundamental. All of the
capabilities of the digital computer are derived from the simple building blocks of '0' and
'1'. There is no degree of vagueness here, '0' and '1' are precise digital entities and very
different from the massively parallel and largely unpredictable interactions of neurons and
synapses that drive human behavior. It is not intuitively obvious how to create the high
level representations of real world objects (e.g., ship, aircraft, dog, house, power, security,
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etc.) that appear to be a prerequisite for reasoning and learning capabilities, in a digital
computer. While these objects can be fairly easily represented in the computer as
superficial visual images (in the case of physical objects such as aircraft, weapons and
buildings) and data relationships (in the case of conceptual objects such as power and
security) that in itself does not ensure that the computer has any understanding of their
real world meaning. These representations are simply combinations of the basic digital
building blocks that model, at best, the external shell rather than the internal meaning of
the object.

Unfortunately, it is still not generally understood that this representational inadequacy is
the single most limiting factor in virtually all existing decision-support systems. For
example, current military command and control systems tend to overwhelm commanders
with hundreds of detailed satellite pictures of battlefield conditions that are transmitted
by computers as digital packages rather than groups of objects. As a result the
interpretation, filtering and fusion of these images, areas in which computer-assistance
would be highly desirable, become the burdensome task of the human decision maker.

More than 10 years ago when the Collaborative Agent Design Research Center (CADRC)
first embarked on the development of cooperative multi-agent systems we recognized the
fundamental importance of representation, as a prerequisite for providing computer-based
agents with reasoning capabilities. We discovered that while this problem was well known
and had been the subject of considerable research in the artificial intelligence community,
the results of this research work had generally remained the province of that close-knit
community.

Early practical implementations of artificial intelligence systems were almost exclusively
confined to stand-alone applications, such as expert systems (e.g., Prospector (Duda et al.
1977, Reboh 1981), MYCIN (Buchanan and Shortliffe 1984), and ASTA (Wilson et al.
1984)). Since these systems were not intended to interface with other applications the
importance of representation continued to be largely ignored by the mainstream of
software developers and users. Over the past decade the CADRC has explored, adapted
and implemented several high level representation techniques in its various decision-
support applications for industry and government sponsors (Myers et al. 1993). While
there is a need for a great deal more work in this area the state of technology today is,
without question, capable of providing an internal representation level that can support
meaningful reasoning assistance in large integrated decision-support systems.  

2.3  Computer Applications as Agent-Based Systems

In the broadest sense an agent may be described as a computer-based program or module
of a program that has communication capabilities to external entities and can perform
some useful tasks. According to this definition agent software can range from the
simplest, stand-alone, predetermined, algorithmic application to the most intelligent,
integrated, multi-agent decision-support system that advanced technology can produce
today. While such a broad definition may afford little insight into the nuances of agent
characteristics and behavior, it does provide a convenient basis for briefly tracing the
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evolution of computer applications (Figure 3) within three 'waves' of software
development, namely: stand-alone, single-agent software that is mostly procedural in
nature; multi-agent and object-agent software with cooperative and collaborative
capabilities, respectively; and, software that supports adaptive and emergent knowledge
systems .

2.3.1  '1st Wave' Applications Software

Typically, 1st Wave computer applications are large single-process programs that execute
in a sequential fashion with limited user interaction (Figure 4). Data enter these programs
mostly at the beginning of the step-by-step execution path and results become available at
the end. The inability of the user to observe the progressively evolving solution and, if
desirable, redirect the execution results by changing the values of parameters mid-stream
is a particularly cumbersome feature of this type of software. Similarly, it is exceedingly
difficult to link these programs with other programs into larger software systems, so that
the results generated by one program can be used to influence the results of another
program. 1st Wave software was simply not designed to communicate within a
collaborative environment. Each program is intended to run to completion before sharing
its results with the world. In the case of deep simulations this means that much of the
execution time may be wasted, since the user is unable to monitor the developing solution
and halt or redirect the simulation if it is clearly moving in the wrong direction.

Single-Agent Software
(Stand-Alone)

FIRST WAVE

Multi-Agent Software
(Cooperative)

SECOND WAVE

Object-Agent Software
(Collaborative)

Message-Agent Software
(Adaptive)

THIRD WAVE

Robotic-Agent Software
(Emergent)

          

USER DATA

USER DATA

INPUT

OUTPUT

O   Single Process and Single User

O   Low Level Object Representation

O   All Input from Data Files and User

O   All Output to Data Files and User
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Figure3: Computer Software Evolution Figure 4: '1st Wave' Computer Applications

An equally serious shortcoming of 1st Wave software is that it typically has no
understanding of the nature of the information that is being processed. It recognizes data
only at their lowest level of representation, such as text strings, numbers and coordinates,
rather than objects with characteristics and relationships to other objects. This not only
exacerbates the integration problem, but also renders any efforts to add reasoning
capabilities to these programs hardly worthwhile.
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1st Wave software assumes that decision-making is essentially a sequential process in
which every subsequent step depends on the completion of the preceding step. This view
of decision-making is far removed from real world experience, where project teams solve
problems collaboratively and contribute to the decision-making process whenever they
have something useful to share. Seldom, if ever, is a team member prevented from
contributing information until a certain stage or milestone has been reached. On the
contrary, team members are encouraged to exchange information freely in the hope that
their contributions will accelerate the solution process and increase the quality of the
decisions that are made.

2.3.2  '2nd Wave' Applications Software

Adaptation of 1st Wave software to increasingly more complex real world problem
situations has led to a hybrid of human and computer-based decision-support systems
(Figure 5). Individual members of the human problem team utilize computer-based tools
to assist them mostly with the computational and planning components of their tasks.
However, this assistance is limited to the individual team member. While the computer
can retrieve and send information from and to shared databases, it exercises these
capabilities only on the request of its user. Collaboration within the problem team is
largely restricted to the communications initiated by team members. The computer shares
in these communications only to the extent that its user initiates queries to shared
databases. The computer functions as a stand-alone agent that interacts with its user, but
does not actively participate in the collaborative problem solving process.
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In this hybrid decision-support environment, which is still representative even of the
more critical transportation and military systems today, much of the collaboration is
based on human-to-human voice communication. As a result, under severe stress
conditions (i.e., surge conditions) these systems are subject to serious communication
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bottlenecks that will disrupt and may even terminate the decision-making process. In
recent years examples of these conditions have occurred during environmental disasters,
such as earthquakes in the US, and military missions, such as Desert Storm in the Middle
East. In the latter case, as shown in Figure 6, the combination of a hierarchical command
and control structure with a 1st Wave software architecture produced a high potential for
communication failure. A massive build-up of US and allied forces (i.e., more than
500,000 personnel) in the theater was supported by computer-based communication
facilities that reflected the chain of command through multiple levels from the commander
in chief (CINC) down to the soldier in the battlefield. In this human-based C4I system
environment continuous electronic and voice communication, essentially from person-to-
person, quickly clogged the available communication channels.

During the late 1990s the limited computer-assistance capabilities (Figure 5) that are
reflective of 1st Wave software will be increasingly replaced by integrated, multi-agent,
cooperative systems. This signals the emergence of 2nd Wave software (Figure 7) in
which the contributions of several decision-support components are coordinated through
an object-serving inter-process communication facility. The components, commonly
referred to as agents, may be separate processes or modules of one or more processes.
They may be rule-based expert systems, procedural programs, neural networks, or even
sensing devices. Increasingly, these agents will have the ability to explain their actions and
proposals, as they interact spontaneously with each other either directly or through
coordination facilities.
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As discussed previously, 2nd Wave software requires a high level internal representation
of the real world objects that are central to the problem situation. This is a prerequisite
for the reasoning capabilities of the agents and also for the interaction of the user(s) with
the system. The objective of 2nd Wave software is not to automate the decision-making
activity, but to create an effective partnership between the human decision maker and the
computer-based agents. In this partnership the human agent must be able to communicate
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with the computer-based agents in terms of the same real world objects that are used so
effectively in all human reasoning endeavors. In their role as active collaborators the
computer-based agents will have information needs that cannot be totally predetermined.
Therefore, similar to the human agent, they will require the capability to dynamically
generate database queries and initiate user interactions. At least some of the information
sources accessed by the agents will be prototypical in nature (i.e., standard practices, case
studies, and other typical knowledge pertaining to the problem situation), consistent with
the notion of knowledge-based systems.

As mentioned previously (see Section 2.2), human and computer capabilities are
complementary in many respects. Where we human beings excel in the areas of
abstraction, conceptualization, intuition and creativity, the performance of the computer
cannot be described as being even adequate. However, when it comes to computational
speed and accuracy, searching for and storing data, redundancy and parallelism,
information persistence, and continuous availability, the computer outperforms us by far.
It is therefore not surprising that current, 2nd Wave software, developments are
increasingly focusing on collaborative systems in which users interact with computer-
based expert agents (Figure 7). Typically, each agent is designed to be knowledgeable in a
narrow domain, and represents the viewpoint of that domain in its collaborative
endeavors. In this respect it provides services and can be categorized as a service-agent
(Figure 8).

The service-agents are endowed with a communication facility that allows them to receive
and send information. The manner in which they participate in the decision-making
activities depends on the nature of the application. They can be designed to respond to
changes in the problem state spontaneously, through their ability to monitor information
changes and respond opportunistically, or information may be passed to them in some
chronological order based on time-stamped events or predefined priorities. They should
be able to generate queries dynamically and access databases automatically whenever the
need arises. In other words, service-agents should have the same data search initiation
capabilities as the user and should not be dependent solely on the user for access to
external information sources. In fact, the human users in such multi-agent systems may be
categorized as very intelligent, multi-domain service agents. Examples of such service-
agent systems can be found in the literature (Durfee 1988, Pohl et al. 1989, Lesser 1995).

Within a networked environment the service-agents pertaining to a single multi-agent
system (Figure 8) may be distributed over several computers, and even the coordination
facilities (i.e., planning, negotiation, conflict detection, etc.) may be distributed over
several nodes (Pohl et al. 1992). Alternatively, several single multi-agent systems can be
connected (Figure 9). In this case each multi-agent system functions as an agent in a higher
level multi-agent system. Such systems are well suited to planning functions in which
resources and viewpoints from several organizational entities must be coordinated.

Typical application areas include military mission planning and facilities management.
The user at each node should be able to plan in multiple worlds. For example, a private
world in which shared information sources may be accessed but the deliberations of the
user are not shared with other users, and a shared world that allows and encourages the
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continuous exchange of comments, plans and instructions. The capability normally exists
for the user to maintain multiple views of each world to facilitate experimentation and the
exploration of alternatives (Nadendla and Davis 1995). The service-agents resident in each
system (i.e., at each node) should be able to differentiate between worlds and also
between the views of any particular world. This will require a high degree of parallelism
that must be supported by the system architecture.

Multiple service-agent systems offer many opportunities for application customization.
For example, the viewpoints and objectives of a particular organizational entity or user
can be represented by the specific combination of service-agents and the capabilities and
priorities of each individual agent. In the case of a facilities management application
involving real estate properties, the often distinctly varying objectives of the building
owner, the needs of the different occupant groups, the security staff, and the maintenance
personnel, will require a significantly different mix of agent service capabilities at each
node. Also, each node will require access to databases that are shared by all or several
nodes and distinct information sources that are only locally relevant. The cooperative
decision-support capabilities of these distributed systems extend beyond the assistance
provided by the local service-agents, to the ability of users and software agents to
negotiate both through direct communication and by sending partial or complete solution
proposals between nodes.

So far we have discussed multi-agent systems involving two types of agents; namely,
service-agents and human agents (i.e., users). Other agent types are certainly feasible. Of
particular interest is the agentification of the information objects that are intrinsic to the
nature of each application. These are the information objects that human decision makers
reason about, and that constitute the building blocks of the real world representation of
the problem situation. The fundamental need for the computer-based decision-support
system to share this high level representation with the user has been discussed
previously.
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The notion of object-agents brings several potential benefits. First, it increases the
granularity of the active participants in the decision-making environment. As agents with
communication capabilities, objects such as armored vehicles (in military missions),
aircraft (in air traffic control), or building spaces (in architectural design), can pursue their
own needs and perform a great deal of local problem solving without continuously
impacting the communication and coordination facilities utilized by the higher level
components of the decision-support system (Figure 10). Typically, an object-agent is a
process (i.e., program) or component of a process that includes several adjuncts that
provide the agent with communication capabilities, process management capabilities,
information about its own nature, global objectives, and some focused problem solving
tools.

Second, the ability of object-agents to request services through their communication
facilities greatly increases the potential for concurrent activities. Multiple object-agents
can request the same or different services simultaneously. If necessary, service-agents
responding to multiple service requests can temporarily clone themselves so that the
requests can be processed in parallel.  Third, groups of object-agents can negotiate among
themselves in the case of matters that do not directly affect other higher level components
or as a means of developing alternatives for consideration by higher level components.
Fourth, by virtue of their communication facilities object-agents are able to maintain their
relationships to other objects even though they are themselves a product of
'decomposition'. In other words, the concept of object-agents overcomes one of the most
serious deficiencies of the rationalistic approach to problem solving; namely, the dilution
and loss of relationships that occurs when a complex problem is decomposed into sub-
problems. In fact, the relationships are greatly strengthened because they become active
communication channels that can be dynamically created and terminated in response to
the changing state of the problem situation.

2.3.3  '3rd Wave' Applications Software

The combination of object-agents and service-agents in the same decision-support system
suggests a logical transition from 2nd Wave to 3rd Wave software in which even simple
learning capabilities may eventually lead to emergent knowledge (Brooks 1990).  Object-
Agents may represent abstract concepts such as image and power, collective notions such
as climate, virtual entities such as a building space during the design process (Pohl 1996),
physical objects such as a M1A1 tank in the battlefield, or even human beings such as an
individual soldier, squad or platoon. In the latter case a small communication device,
embedded in a computer tag, is attached to the uniform of the soldier. This Radio
Frequency Tag (RF-Tag) is capable of receiving and sending messages to an object-agent
taking the role of a mentor within the computer-based command and control system. In
this scenario the object-agent can serve many functions. It can provide several kinds of
assistance to the soldier, such as medical advice, geographical position and terrain
information, enemy location and strength, maneuver strategies, fire support alternatives,
and so on. Conversely, the object-agent can use the soldier as part of a sensory array that
continuously collects intelligence with and without the soldier's direct involvement.
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Many of the service requests received by the object-agent will need to be passed onto
service-agents, human agents, or other object-agents (Figure 11). This can be
accomplished through the appropriate use of both broadcasting and directed modes of
communication. For example, a request for medical advice may initiate several actions by
the mentor agent: a specific request for more detailed information to the soldier; the
collection of bodily functions data from sensors embedded in the soldier's uniform, if the
soldier has been wounded; a broadcast for evacuation assistance, if the wounds are
serious; a request for specific self-help medical advice directed to a service-agent with
medical expertise; a situation update to the commander's mentor agent and/or the
designated command and control service-agent; and so on. Even if the soldier is unable to
personally communicate, the mentor agent is automatically alerted to the soldier's medical
condition through sensors attached to his or her uniform or skin.

SERVICE
AGENT

USER

SERVICE
AGENT

SERVICE
AGENT

SERVICE
AGENT

SERVICE
AGENT

SERVICE
AGENT

SERVICE
AGENT

USER

COORDINATION
AND

COMUNICATION

OBJECT
AGENTS

OBJECT
AGENTS

OBJECT
AGENTS

OBJECT
AGENTS

       

Concentrated Human/Machine
Fighting Units

Theater

CINC

Continuous 
Electronic 
Monitoring 
With Action 
Capability

Virtual Agent
Layers of CSS

AGENT-BASED
C4I  SYSTEM

SERVICE
AGENTS

OBJECT
AGENTS

SUPPORT
UNITS

Figure 11: Object-Agents and Figure 12: Cooperative Military Command
Service-Agents and Control System

The schematic representation of an agent-based cooperative command and control system
shown in Figure 12, differs from the conventional 'human-based' command and control
system shown previously in (Figure 6) in many significant respects.  First, the
continuous and automatic monitoring of human/machine fighting units by the various
types of agents that operate spontaneously within the communication system provides
the warfighter with access to instantaneous advice and guidance. The agent-to-agent
communication that facilitates this continuous access to information and intelligent
analysis is not dependent on human-to-human interaction. In a conventional command
and control system the communication channels are easily saturated by the continuous
flow of human-to-human electronic and voice communications.  Efforts to control this
traffic inevitably require the imposition of communication restrictions that can easily
prevent critical information from reaching the appropriate commander or warfighter.  In
addition, as was shown in Figure 6, the human-to-human interaction encourages a build-
up of support personnel in and around the theater.  This build-up is costly in terms of
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transportation and logistics, increases the danger of casualties, and places an additional
burden on the already overloaded communication facilities.

Second, the multi-agent system architecture decentralizes both the collection and analysis
of information. Individual human and machine warfighting units serve equally well as
collectors and generators of data, as they do as recipients of data. In this way a dispersed
force of warfighters can represent an important data sensor array, with the ability to add
value by converting the data into information and knowledge close to the source. This
decentralization of the data analysis process is particularly valuable in terms of
distributing the communication traffic and validating the results of the analysis at the
collection source.

Third, the seamless integration of planning, execution and training functions within the
same command and control communication system allows the commander and the
individual warfighter to continuously and instantaneously switch from one mode of
operation to another. In fact, the parallel nature of the system will allow specific
planning, execution and training tasks to be undertaken concurrently.  For example, the
commander may wish to initiate a planning function through one set of agents while
executing a specific operation in the theater, and at the same time simulate a particular
'what if ' scenario in anticipation of a possible future situation.

Recent studies by the US Marine Corps and the US Army have demonstrated the
capabilities of relatively low cost computerized RF-Tags that are mounted on vehicular
cargo.  Object-Agents can be designed to communicate with tagged equipment not only
for purposes of monitoring their location, but also in a service and low level decision-
making role.  For example, let us assume a tactical cargo load-planning scenario in which a
fuel truck, fitted with a RF-Tag has been loaded onto a ship. During the voyage the fuel
truck starts to leak.  While the volume of fuel leaked is fairly small, even this small
amount constitutes a serious potential hazard onboard ship. Alerted of the situation
through a simple feedback mechanism the RF-Tag communicates to its companion object-
agent, resident in the command and control system, both its location and the extent of the
leakage.  The object-agent analyses the situation, either through its own capabilities or by
requesting supporting services from other agents, and automatically notifies appropriate
command personnel, or other agents, or the ship directly. What is particularly
noteworthy in this scenario is the fact that the command and control system was not only
able to automatically detect the problem, but also analyze the situation and take action
without the need for human intervention.

In existing multi-agent system configurations that include only domain agents (i.e.,
service-agents), conflicts arise when agents either disagree among themselves or with a
decision made by the user.  For example, utilizing such a system for the load-planning of a
ship, the placement of a fuel truck in a particular ship compartment might provoke the
latter type of conflict. If the stow-planner unknowingly places the truck in the immediate
vicinity of another cargo item of a different hazardous material class, then the Hazard
agent will alert the user and explain the necessary segregation requirements. The stow-
planner resolves the conflict by relocating or unloading one or both of the cargo items or,
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alternatively, overrules the service-agent. The fuel truck, as a passive object, is involved in
the conflict resolution process only as an information source that is used by the service-
agent in its deliberations. In other words, while the validation of the load-planning
decision is entirely dependent on the knowledge encapsulated in the object the latter is
unable to actively participate in the determination of its own destiny.

The situation is somewhat analogous to a scenario common in real life when one or more
persons feel compelled to make decisions for another person, although the latter might be
more competent to make those decisions himself. The outcome is often unsatisfactory
because the decision makers tend to use general domain information where they lack
specific knowledge of the other person. The 'individuality' of the problem situation has
been usurped by the application of generalizations and, as a result, the quality of the
decisions that have been reached are likely to be compromised. In the example of the two
hazardous cargo items, if the fuel truck were to be represented by an object-agent then
much of the decision-making could be localized within the knowledge domain of the agent.
As soon as the fuel truck has been placed in the ship compartment by the stow-planner
the Fuel Truck agent could broadcast two specific requests for service: Where am I
located?; and, What are the locations of other hazardous cargo items?  The answers to
these questions can be compared by the Fuel Truck agent directly to what it knows about
its own mobility and access capabilities.  The development of alternative strategies for
resolving the hazardous material problem can now take place within the context of all of
the information in the Fuel Truck agent's knowledge domain.  For example, the possibility
of relocating itself to another compartment that already contains hazardous material of the
same class can be explored by the agent (with or without the active collaboration of the
stow-planner) as a direct consequence of its own deliberations. In multi-agent systems
incorporating only service-agents this remedy is less likely to be proposed, because the
interests of the fuel truck are fragmented among the various service-agents that drive the
conflict resolution process.

There is another kind of conflict resolution scenario that becomes possible with the
availability of object-agents. An object-agent may develop a solution to a sub-problem in
its own domain that redirects the entire course of the overall solution plan.  For example a
squad, operating in dispersed mode in enemy territory and communicating with a mentor
agent (Figure 13), performs its assigned enemy surveillance mission. It communicates
through its object-agent certain enemy behavior that it believes could be turned to
advantage if specific elements of the current overall operations plan were to be modified.
However, such suggestions are rejected at operational levels below the commander for
reasons that appear to this squad to be based on erroneous intelligence. The squad judges
the matter to be of a potentially serious nature and instructs its mentor agent to validate
aspects of the squad's current understanding of the battlefield situation.

The object-agent commences a low level investigation by communicating with the mentor
agents of several other squads and utilizing the services of domain agents (i.e., service-
agents) where necessary. Soon an alarming picture emerges. It appears possible that the
enemy has infiltrated one node of the command and control system and is entering
erroneous data through this node. The effects of this gradually evolving deception could
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lead to disastrous consequences.  The squad, realizing the potentially serious nature of the
situation, progressively develops through the activities of its object-agent a more and
more compelling case in support of its observations and suggestions. Eventually, the
overwhelming weight of evidence developed from the interactions of the squad with its
object-agent and other agents in the command and control system attracts the attention of
the Command Element. The commander and his object-agent quickly undertake another
analysis of the situation considering additional factors not considered in the squad's
analysis. He verifies an almost certain localized penetration by the enemy of the
command and control system and decides to utilize this knowledge by implementing a
double-deception strategy.

OBJECT-AGENT
(Mentor Agent 
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(Mentor Agent 
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Figure 13: Object-Agents as Mentors in an Figure 14: 3rd Wave Applications Software
Integrated Command and Control System

This scenario demonstrates several significant capabilities of a multi-agent command and
control system incorporating object-agents.  First, it is significant that the likely enemy
penetration of the information system has been discovered at all. If the squad had been
restricted to communicating its data as passive objects for processing by service-agents
there would not have been any desire on the part of the command and control system to
pursue the problem after the initial conflict resolution.  Second, the squad's object-agent
was able to undertake its investigation in a decentralized fashion without impacting higher
level command and control activities until it was ready to present a strong case for
reconsideration. However, it was able at any time to alert higher levels of the command
structure as soon as the results of its investigation warranted such action.

Third, if the squad's projections had been rejected at all higher agent levels, the squad's
object-agent could have appealed directly to the commander or his object-agent. Under
these circumstances the commander would have several alternative courses of actions
open: also reject the squad's suggestions; require one or more of the higher level agents
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(i.e., object-agents and service-agents) to explain their ruling; reset certain parameters that
would allow the higher level agents to reconsider their ruling; overrule the higher level
agents and accept the proposal; or, capture the current state of the battlefield situation as
a recoverable view and use the squad's proposition as the basis for the exploration of
alternative solution paths.

Apart from their immediate action capabilities, object-agents support the highly desirable
goal of decentralization through localized decision-making and communication. In this
kind of distributed, cooperative environment it would be useful if messages themselves
could be endowed with agent capabilities. At least certain types of messages would
benefit greatly from action capabilities. For example, a message-agent sent by an object-
agent or service-agent to find particular information could clone itself to seek the
information concurrently in several potential sources. Once apparently relevant
information has been found it could be synthesized to formulate a meaningful response to
the originator of the query. Clearly, message-agents would add another level of
granularity, decentralization and action capability within the distributed, cooperative
decision-support system architecture.

The nature and typical mechanisms of the four agent types discussed may be summarized
in terms of the interests they represent and the mechanisms they utilize to reach the
objects that are derived from these interests.

♦ Human Agents  (i.e., users) represent intelligent life and their typical mechanisms
include: continuous sensory input (i.e., sight, touch, smell, taste, and hearing);
complex communication in the form of speech, body language, and extrasensory
perception; and, the ability to create knowledge through learning and intuition.

♦ Service-Agents  represent domain expertise and their typical mechanisms include:
simple communication in the form of limited vocabulary messages and limited
sensory data; logical inferencing based mostly on the application of deductive and
some inductive techniques (Shapiro 1987); and, the performance of services within
the narrow boundaries of their domain knowledge.

♦ Object-Agents  represent data entities and their typical mechanisms include:
simple communication capabilities and logical inferencing skills on par with those
of the service-agent;  the ability to collaborate and negotiate with other agents as
they seek to satisfy their needs and objectives; and, the ability to request specific
services from service-agents and human agents.

♦ Message-Agents  represent lower level actions that are intended to contribute to
higher level decision processes. Their typical mechanisms include: the creation of
clones of themselves to initiate the same action along multiple paths; the synthesis
of multi-source responses; and, triggering of actions at their destination.

These developments in distributed, cooperative, multi-agent software architectures are
converging in several respects with another approach to the design and implementation of



CADRC, Cal Poly, San Luis Obispo, CA 93407:  Technical Report CADRU-11-97 (Jan'97; 3rd Printing Apr’03)

42

intelligent decision-support systems. This approach is based on the concepts of emergent
knowledge. Whereas the multi-agent systems that characterize 2nd Wave software depend
largely on predefined knowledge and high level problem solving processes, 3rd Wave
software (Figure 14) builds on agents with low level skills that cooperatively and
cumulatively develop an emergent collective intelligence.

A simplistic analogy can be made by comparing the knowledge acquisition and learning
behavior of an infant with the established knowledge base of an adult. Infants learn about
their world through environmental stimuli that are processed through their motor-sensory
facilities and stored as experience. Progressively, this experience is conceptualized and
abstracted into higher level knowledge as the infant moves through childhood into
adulthood. The essence of this human evolution is a continuous process of learning and
adaptation that is based on the interactions and contributions of a multitude of low level
capabilities, none of which on its own can be claimed to have made the major contribution
to the end result.

Aspects of the notion of emergent knowledge have been studied in animal behavior and
are readily discernible in human beings. Maturana (1960) found on the basis of
experiments that when a frog catches a fly, not just specific components, but the greater
part of the nervous system of the frog is involved in setting the frog into a 'fly catching'
state. The components appear to interact in some manner to cooperatively contribute to
the final act of catching the fly. Similarly, when human beings that have been successful in
exercising a very high degree of skill in some particular endeavor (e.g., tight-rope walking,
athletic competition, or a game of chess) are asked to explain the underlying reasons for
their capabilities they will inevitably point to the importance of general mental
preparation for the event rather than any specific practice exercise.

3rd Wave software will attempt to emulate the learning capabilities of the infant and child
rather than try to model the existing world in the computer. It is true that 2nd Wave
software will always be limited in its ability to deal with unforeseen conditions. The best
currently available industrial robot may perform superbly in a modern factory for which
it was designed, but will fail miserably in the relatively unstructured environment of an
older less mechanized factory. The challenge for 3rd Wave software is to build agents that
learn through their interaction with the natural environment (Figure 14). These agents
must incorporate a much more sophisticated set of communication capabilities than are
currently available or foreseen in the near future for either service-agents or object-agents
in 2nd Wave software. Such capabilities include artificial vision, movement, touch, and
hearing. While this is a formidable research agenda in itself, the development of the low
level internal software components that are necessary to cooperatively process the
environmental stimuli into knowledge and understanding presents an even more daunting
task.

While progress is being made in the development of robotic agents, with some astonishing
successes, it is unlikely that 3rd Wave software with significant learning capabilities (i.e.,
learning capabilities that are comparable to human capabilities, even though they might be
notably inferior) will become available during the next two decades. In the meantime,
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multi-agent, knowledge-based systems will greatly advance human decision-making
capabilities and at the same time provide a necessary test bed for gaining experience with
human-computer partnership environments. The value and need for this experience must
not be underestimated. It is a prerequisite for the effective application of the rapid
technological advances that are expected to continue in the information systems field.

2.4 A Question of ‘Intelligence’

Surely, computer intelligence is a misnomer? From a commonsense point of view it would
appear that humans have intelligence and computers are just very fast but unintelligent
machines. Looking at this question from an entirely human point of view we may well
come to such a conclusion. However, are there different kinds of intelligence? In other
words, is intelligence something that is entirely reserved for living beings or can a machine
display behavior that is akin to intelligence?

Before attempting to answer this question we should perhaps first address another
seemingly less difficult question: Are there different levels of intelligence? If there are
levels of intelligence then remembering is probably the lowest level of intelligence.
Certainly computers can store vast amounts of data and can retrieve this data quickly and
accurately. The immediate response might be that remembering is more than just
retrieving data. Remembering also involves relationships and context. It is this context
that makes data meaningful and relevant.

Interestingly enough that is what the current paradigm shift in computer software design
and development is all about. We are moving from a data-centric to an information-centric
software environment. What this really means is that we are representing information
rather than data in the computer (i.e., information is data with relationships to provide
some degree of context). This allows us to include modules in the software that are able to
automatically reason (more recently referred to as agents) and communicate the results of
their reasoning activities to other agents (including human users). One could argue that in
some respects we are able to create in this way a virtual copy of a problem situation, or
even a limited form of human society, in the computer environment. The players (i.e., the
agents) in this virtual society can assume many different roles and can contribute and
collaborate at many levels; - from the most primitive to the more sophisticated levels.

So, it seems that if we are careful to store not only data in the computer but also the
relationships that convert such numbers and words into information then we can also
embed in the software rule sequences that are capable of reasoning about this information.
Such sequences may be as simple as condition-action statements. For example, if an
enemy tank unit is sighted then place a call-for-fire on the enemy tank unit and
commence the process of weapon selection. In this way we can implement, through the
use of computer software, at least some elementary automatic reasoning capabilities in
computers. As an example, a decision-support application for expeditionary warfare
involving sea-basing operations might include agents that perform very elementary tasks
such as calculating the fuel consumed by a helicopter in transporting supplies from the
sea base to an inland supply point.
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However, the same application might also incorporate agents that perform more
sophisticated tasks. For example, selecting the best mix of lift assets (e.g., helicopters,
hovercraft, vertical take-off aircraft, etc.) to transport a wide range of supplies to multiple
landing zones within requested time windows, and within constraints such as weather
conditions, enemy actions, and so on. The latter agents consider results received from
other agents, and utilize a wide range of heuristic and algorithmic methods to arrive at a
possible solution. In some respects this is similar to human society where problems are
often solved through a team effort. In such teams some people contribute very simple
capabilities and others contribute more sophisticated capabilities.

However, in respect to the sea-basing software application discussed above one might
ask: Are the combined actions of these agents totally predictable? The answer is, no.
While the results produced by the simple agents are certainly predictable, the impact that
these results may have on the collective actions of the system is not necessarily
predictable. In other words, the intelligence of the software system derives from the
interactions (or more appropriately the collaboration) of the communicating elements of
the system (i.e., the agents). With some exceptions one would generally not attribute
intelligence to any single agent in current command and control information-centric
software systems. However, such systems do display a collective intelligence that is not
necessarily predictable and that can be quite powerful.

It therefore seems that we human beings must be willing to accept the proposition that
there are different types of intelligence. In other words, intelligence cannot be measured
only in human terms. There is no a priori reason to assume that computer intelligence is
like human intelligence. In a corollary sense, it is unlikely to be productive to attempt to
create a single software agent with human-like intelligence. A better approach is to look
upon software as a virtual environment in which many software agents (utilizing their
automatic reasoning capabilities, both reactively and proactively) navigate themselves
into a solution area, through their countless interactions (i.e., collaborations). When we
add the human user (i.e., human intelligence) to this environment we increase the potential
capabilities of the system manifold.
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3.  Decision Making as a Human Cognitive Activity

The purpose of this Section is to present some understandings of the human problem
solving activity that we have gained in the Collaborative Agent Design Research Center
(CADRC) over the past decade. Since we feel strongly that the human decision maker
should be an integral component of any computer-based decision-support system, it
follows that we would have endeavored to incorporate many of the elements that appear
to be important to the user in the design of these system. The complexity of the human
cognitive system is evidenced by the large body of literature that describes problem
solving behavior and the relatively fewer writings that attempt to provide comprehensive
explanations of this behavior. Our contributions in this field are confined to the
identification of important elements of the problem solving activity and exploration of
how these elements will influence the design of a decision-support system.

3.1  Some Human Problem Solving Characteristics

Human beings are inquisitive creatures who seek explanations for all that they observe
and experience in their living environment. While this quest for understanding is central to
our success in adapting to a changing and at times unforgiving environment, it is also a
major cause for our willingness to accept partial understandings and superficial
explanations when the degree of complexity of the problem situation confounds our
mental capabilities. In other words, a superficial or partial explanation is considered better
than no explanation at all. As flawed as this approach may be, it has helped us to solve
difficult problems in stages. By first oversimplifying a problem we are able to develop an
initial solution that is later refined as a better understanding of the nature of the problem
evolves. Unfortunately, now we have to contend with another characteristic of human
beings, our inherent resistance to change and aversion to risk taking. Once we have found
an apparently reasonable and workable explanation or solution we tend to lose interest in
pursuing its intrinsic shortcomings and increasingly believe in its validity. Whether driven
by complacency or lack of confidence, this state of affairs leads to many surprises. We
are continuously discovering that what we believed to be true is only partly true or not
true at all, because the problem is more complicated than we had previously assumed.

At times a particular set of explanations, or school of thought, becomes entrenched as a
paradigm that is not easily broken. Kuhn (1977) has drawn attention to the stagnating
influence on progress of scientific paradigms, the resistance experienced by individuals or
small groups that wish to correct flaws in a paradigm, and the resurgence of innovative
activity after the paradigm has been broken. If experts in science will succumb to this
weakness in human nature then how much more difficult will it be for a layperson to
maintain a discerning mind? This could well become a serious consideration in problem
areas where technology advances at a rapid rate, and these advances are almost
immediately translated into commercial products that are available to large sections of the
community. One such example is, of course, the rapid development of computers and
communication systems and their potential assistance in human decision-making
endeavors.
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The complexity of problems faced by human society in areas such as management,
economics, marketing, engineering design, and environmental preservation, is increasing
for several reasons. First, computer-driven information systems have expanded these
areas from a local to an increasingly global focus. Even small manufacturers are no longer
confined to a regionally localized market for selling their products. The marketing
decisions that they have to make must take into account a wide range of factors and a
great deal of knowledge that is far removed from the local environment. Second, as the
scope of the problem system increases so do the relationships among the various factors.
These relationships are difficult to deal with, because they require the decision-maker to
consider many factors concurrently. Although the biological operation of the human brain
is massively parallel, our conscious reasoning processes are sequential. Simply stated, we
have difficulty reasoning about more than two or three variables at any one time. Third, as
the scope of problems increases decision-makers suffer simultaneously from two
diametrically opposed but related conditions. They tend to be overwhelmed by the shear
volume of information that they have to consider, and yet they lack information in many
specific areas. To make matters worse, the information tends to change dynamically in
largely unpredictable ways

It is therefore not surprising that governments, corporations, businesses, down to the
individual person, are increasingly looking to computer-based decision-support systems
for assistance. This has placed a great deal of pressure on software developers to rapidly
produce applications that will overcome the apparent failings of the human decision-
maker. While the expectations have been very high, the delivery has been much more
modest. The expectations were simply unrealistic. It was assumed that advances in
technology would be simultaneously accompanied by an understanding of how these
advances should be applied optimally to assist human endeavors. History suggests that
such an a priori assumption is not justified. There are countless examples that would
suggest the contrary. For example, the invention of new materials (e.g., plastics) has
inevitably been followed by a period of misuse. Whether based on a misunderstanding or
lack of knowledge of its intrinsic properties, the new material was typically initially
applied in a manner that emulated the material(s) it replaced. In other words, it took some
time for the users of the new material to break away from the existing paradigm. A similar
situation currently exists in the area of computer-based decision-support systems.

3.1.1  The Rationalistic Tradition

To understand current trends in the evolution of progressively more sophisticated
decision-support systems it is important to briefly review the foundations of problem
solving methodology from an historical perspective. Epistemology is the study or theory
of the origin, nature, methods and limits of knowledge. The dominant epistemology of
Western Society has been technical rationalism (i.e., the systematic application of
scientific principles to the definition and solution of problems).

The rationalistic approach to a problem situation is to proceed in well defined and largely
sequential steps (Figure 15): define the problem; establish general rules that describe the
relationships that exist in the problem system; apply the rules to develop a solution; test



CADRC, Cal Poly, San Luis Obispo, CA 93407:  Technical Report CADRU-11-97 (Jan. '97, 3rd Printing Apr’03)

47

the validity of the solution; and, repeat all steps until an acceptable solution has been
found. This simple view of problem solving suggested a model of sequential decision
making that has retained a dominant position to the present day. With the advent of
computers it was readily embraced by 1st Wave software because of the ease with which
it could be translated into decision-support systems utilizing the procedural computer
languages that were available at the time.

STEP 1:
DEFINE PROBLEM AS A SYSTEM 
OF IDENTIFIABLE OBJECTS THAT 
HAVE KNOWN CHARACTERISTICS.

STEP 2:
FIND GENERAL RULES THAT DEFINE 
THE RELATIONSHIPS AMONG THE 
OBJECTS WITHIN THE CONTEXT OF 
THE PROBLEM SYSTEM.

STEP 3:
APPLY THE RULES TO THE 
PROBLEM SITUATION AND DRAW 
CONCLUSIONS THAT LEAD TO A 
SOLUTION.

STEP 4:
TEST THE SOLUTION AGAINST 
SPECIFIC ACCEPTANCE CRITERIA 
AND IF UNSATISFACTORY RETURN 
TO ANY OF THE PREVIOUS STEPS.

       

STEP-BY-STEP

SINGLE-TASKING

PREDETERMINED
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CLOSED LOOP

STATIC

TIME-CONSUMING

OUTPUT

INPUT

Figure 15: Solution of Simple Problems   Figure 16: Sequential Decision Support

The close correlation between the rationalistic approach and what is commonly referred
to as the scientific method, is readily apparent in the series of basic steps that are
employed in scientific investigations: observe the phenomenon that requires explanation;
formulate a possible explanation; develop a method capable of predicting or generating the
observed phenomenon; interpret the results produced by the method; and, repeat all steps
until an acceptable explanation of the observed phenomenon has been found. Scientific
research typically attempts to establish situations in which observable actions (or
reactions) are governed by a small number of variables that can be systematically
manipulated. Every effort is made to keep the contrived situation simple, clear and
deterministic, so that the results of the simulation can be verified.

However, natural phenomena and real world problems are often very complex involving
many related variables. Neither the relationships among the variables nor the variables
themselves are normally sufficiently well understood to provide the basis for clear and
comprehensive definitions. In other words, problem situations are often too complex to
be amenable to an entirely logical and predefined solution approach. Under these
conditions the analytical strategy has been to decompose the whole into component
parts, as follows:

♦ Decompose the problem system into sub-problems.
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♦ Study each sub-problem in relative isolation, using the rationalistic
approach (Figure 15). If the relationships within the sub-problem domain
cannot be clearly defined then decompose the sub-problem further.

♦ Combine the solutions of the sub-problems into a solution of the whole.

Underlying this problem solving strategy is the implicit assumption that an understanding
of parts leads to an understanding of the whole. Under certain conditions this assumption
may be valid. However, in many complex problem situations the parts are tightly coupled
so that the behavior of the whole depends on the interactions among the parts rather than
the internal characteristics of the parts themselves (Bohm 1983, Senge 1993). An analogy
can be drawn with the behavior of ants. Each ant has only primitive skills, such as the
ability to interpret the scent of another ant and the instinctive drive to search for food,
but little if any notion of the purpose or objectives of the ant colony as a whole. In other
words, an understanding of the behavior of an individual ant does not necessarily lead to
an understanding of the community behavior of the ant colony of which the ant is a part.

Decomposition is a natural extension of the scientific approach to problem solving and
has become an integral and essential component of rationalistic methodologies.
Nevertheless, it has serious limitations. First, the behavior of the whole usually depends
more on the interactions of its parts and less on the intrinsic behavior of each part.
Second, the whole is typically a part of a greater whole and to understand the former we
have to also understand how it interacts with the greater whole. Third, the definition of
what constitutes a part is subject to viewpoint and purpose, and not intrinsic in the
nature of the whole. For example, from one perspective a coffee maker may be considered
to comprise a bowl, a hotplate, and a percolator. From another perspective it consists of
electrical and constructional components, and so on.

Rationalism and decomposition are certainly useful decision-making tools in complex
problem situations. However, care must be taken in their application. At the outset it
must be recognized that the reflective sense (Schon 1983) and intuition of the decision-
maker are at least equally important tools. Second, decomposition must be practiced with
restraint so that the complexity of the interactions among parts is not overshadowed by
the much simpler behavior of each of the individual parts. Third, it must be understood
that the definition of the parts is largely dependent on the objectives and knowledge about
the problem that is currently available to the decision-maker. Even relatively minor
discoveries about the greater whole, of which the given problem situation forms a part, are
likely to have significant impact on the purpose and the objectives of the problem
situation itself.

3.1.2  Decision Making in Complex Problem Situations

At the beginning of this Technical Report (see Section 1) we stressed the importance of
internal and external relationships in complex problem situations. As shown in Figure 17,
there are several characteristics that distinguish a complex problem from a simple
problem. First, the problem is likely to involve many related issues or variables. As
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discussed earlier the relationships among the variables often have more bearing on the
problem situation than the variables themselves. Under such tightly coupled conditions it
is often not particularly helpful, and may even be misleading, to consider issues in
isolation. Second, to confound matters some of the variables may be only partially
defined and some may yet to be discovered. In any case, not all of the information that is
required for formulating and evaluating alternatives is available. Decisions have to be made
on the basis of incomplete information.

Many Related Variables

Some Variables Undefined

Dynamic Information Changes

Solution Objectives Change

Several Possible Solutions

    

CONCURRENT

MULTI-TASKING

OPPORTUNISTIC

ADAPTABLE

OPEN SYSTEM

DYNAMIC

TIME-SAVING

Figure 17: Character of Complex Problems Figure 18: Parallel Decision Support

Third, complex problem situations are pervaded with dynamic information changes.
These changes are related not only to the nature of an individual issue, but also to the
context of the problem situation. For example, a change in location of an enemy force
(even within the same sector of the battlefield) could easily have a major impact on the
entire nature of the combat situation facing the commander. Apart from the disposition of
friendly forces under these changed conditions, the influence on target priorities, and the
effectiveness of available weapon assets, such a relocation could call into question the
very feasibility of the existing course of action (i.e., the battle plan). Even under less
critical conditions it is not uncommon for the solution objectives to change several times
during the decision-making process. This fourth characteristic of complex problem
situations is of particular interest. It exemplifies the tight coupling that can exist among
certain problem issues, and the degree to which decision-makers must be willing to
accommodate fundamental changes in the information that drives the problem situation.

Fifth, complex problems typically have more than one solution (Archea 1987). It is
usually fruitless to look for an optimum solution, because there are no static benchmarks
available for evaluating optimality. A solution is found to be acceptable if it satisfies
certain performance requirements and if it has been determined that the search for
alternatives is no longer warranted. Such a determination is often the result of resource
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constraints (e.g., availability of time, penalty of non-action, or financial resources) rather
than a high level of satisfaction with the quality of the proposed solution.  

While human decision-making in complex problem situations has so far defied rigorous
scientific explanation, we do have knowledge of at least some of the characteristics of the
decision making activity.

♦ Decision-makers typically define the problem situation in terms of issues
that are known to impact the desired outcome. The relative importance of
these issues and their relationships to each other change dynamically
during the decision-making process. So also do the boundaries of the
problem space and the goals and objectives of the desired outcome. In
other words, under these circumstances decision-making is an altogether
dynamic process in which both the rules that govern the process and the
required properties of the end result are subject to continuous review,
refinement and amendment.

♦ The complexity of the decision-making activity does not appear to be due
to a high level of difficulty in any one area but the multiple relationships
that exist among the many issues that impact the desired outcome. Since a
decision in one area will tend to influence several other areas there is a need
to consider many factors at the same time. This places a severe burden on
the human cognitive system. Although the neurological mechanisms that
support conscious thought processes are massively parallel, the operation
of these reasoning capabilities is largely sequential. Accordingly, decision-
makers tend to apply simplification strategies for reducing the complexity
of the  problem solving activity. In this regard it becomes readily apparent
why 2nd Wave software provides a much more useful architecture for
decision-support systems (Figure 18).  

♦ Observation of decision-makers in action has drawn attention to the
important role played by experience gained in past similar situations,
knowledge acquired in the general course of decision-making practice, and
expertise contributed by persons who have detailed specialist knowledge
in particular problem areas. The dominant emphasis on experience is
confirmation of another fundamental aspect of the decision-making
activity. Problem-solvers seldom start from first principles. In most cases,
the decision-maker builds on existing solutions from previous situations
that are in some way related to the problem under consideration. From this
viewpoint, the decision-making activity involves the modification,
refinement, enhancement and combination of existing solutions into a new
hybrid solution that satisfies the requirements of the given problem
system. In other words, problem solving can be described as a process in
which relevant elements of past prototype solution models are
progressively and collectively molded into a new solution model. Very
seldom are new prototype solutions created that do not lean heavily on
past prototypes.
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♦ Finally, there is a distinctly irrational aspect to decision-making in complex
problem situations. Donald Schon refers to a "...reflective conversation
with the situation...". (Schon 1983). He argues that decision-makers
frequently make value judgments for which they cannot rationally account.
Yet, these intuitive judgments often result in conclusions that lead to
superior solutions. It would appear that such intuitive capabilities are
based on a conceptual understanding of the situation, which allows the
problem solver to make knowledge associations at a highly abstract level.

Based on these characteristics the solution of complex problems can be categorized as an
information intensive activity that depends for its success largely on the availability of
information resources and, in particular, the experience and reasoning skills of the
decision-makers. It follows that the quality of the solutions will vary significantly as a
function of the problem-solving skills, knowledge, and information resources that can be
brought to bear on the solution process. This clearly presents an opportunity for the
useful employment of computer-based decision-support systems in which the
capabilities of the human decision-maker are complemented with knowledge bases, expert
agents, and self-activating conflict identification and monitoring capabilities.

3.2  Principal Elements of Decision Making

Over the past decade that the CADRC has been developing distributed, collaborative
decision-support systems some insights have been gained into the nature of the decision-
making activity. In particular, we have found it useful to characterize decision-making in
terms of six functional elements (Figure 19): information; representation; visualization;
communication; reasoning; and, intuition.
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3.2.1  The 'Information' Element

Decision-making in complex problem situations is a cooperative activity involving many
sources of information that are often widely dispersed. Seldom is all of the information
required for the solution, or even only a component of the problem, physically located in
the immediate vicinity of the decision-maker.  In fact, much of the information is likely to
reside in remote depositories that can be accessed only through electronic means, the
telephone, or the temporary relocation of a member of the problem-solving team (Figure
20). If the desired information requires expert advice the services of a consultant may be
required in addition to, or instead of, access to an information resource.

The term 'information' is used here in the broadest sense to include not only factual data
and the progressively more comprehensive and detailed description of the problem
system, but also the many knowledge bases that are part of the local and global
environment within which the problem situation is constituted. In this regard, we are
concerned with the knowledge of the individual members of the problem-solving team, the
knowledge of peripheral players (e.g., colleagues, associates and consultants), the
collective knowledge of the profession (such as the various engineering professions, the
military establishment, or the management profession) and industry, and beyond that
those aspects of what might be referred to as 'global knowledge' that impacts the problem
context.

Typically, the problem specifications (i.e., constraints, criteria, and objectives) evolve
with the problem solution as the decision-makers interact with the problem situation.
Accordingly, the information requirements of the problem solver are not predictable since
the information needed to solve the problem depends largely on the solution strategy
adopted (Fischer and Nakakoji 1991). In this respect problem solving is a learning process
in which the decision-maker progressively develops a clearer understanding of the
problem that is required to be solved. Much of the information that decision-makers use
in the development of a problem solution is gleaned from experience with past projects.
In fact, it can be argued that solutions commonly evolve out of the adaptation, refinement
and combination of prototypes (Gero et al. 1988). This argument suggests that the more
expert human decision-makers are the more they tend to rely on prototypical information
in the solution of complex problems. It would appear that the accumulation,
categorization and ability to apply prototype knowledge is the fundamental requirement
for a human decision-maker to reach the level of 'expert' in a particular domain. Based
largely on the work of Gero et al. (1988) and Rosenman and Gero (1993) the following
techniques used by engineering designers to develop solutions through the manipulation
of prototypes can be identified as being universally applicable to other problem domains:

♦ Refinement:  The prototype can be applied after changes have been made
in the values of parameter variables only  (i.e., the instance of the
prototype is reinterpreted within the acceptable range of the parameter
variables).

♦ Adaptation:  Application of the prototype requires changes in the
parameters that constitute the description of the prototype instance, based
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on factors that are internal to the prototype  (i.e., a new prototype
instance is produced).

♦ Combination:  Application of the prototype requires the importation of
parameter variables of other prototypes, producing a new instance of a
reinterpreted version of the original prototype.      

♦ Mutation:  Application of the prototype requires structural changes to the
parameter variables, either through internal manipulations or the
importation of parameter variables from external sources  (i.e., either a
reinterpreted version of the original prototype or a new prototype is
produced).

♦ Analogy:  Creation of a new prototype based on a prototype that exists in
another context, but displays behavioral properties that are analogous to
the application context.

For application purposes in knowledge-based decision-support systems prototypes may
be categorized into five main groups based on knowledge content (Schon 1988, Pohl and
Myers 1994):

1. Vertical prototype knowledge bases that contain typical object descriptions
and relationships for a complete problem situation or component thereof. Such
a knowledge base may include all of the types that exist in a particular   
problem setting, for example: an operational template for a particular kind of
military mission; a certain type of propulsion unit; or, a building type such as
a library, sports stadium, or supermarket.

2. Horizontal prototype knowledge bases that contain typical solutions for sub-
problems such as logistical procurement practices, construction of a
temporary bunker, or techniques for repairing equipment. This kind of
knowledge often applies to more than one discipline. For example, the
techniques for repairing a truck apply equally to the military as they do to
auto-repair shops, engineering concerns, and transportation related
organizations.

3. Domain prototype knowledge bases that contain guidelines for developing
solutions within contributing narrow domains. For example, the range of
structural solutions appropriate for the construction of a suspension bridge
during a military mission is greatly influenced by the availability of material,
the prevailing wind conditions, and the time available for erection. Posed with
this design problem military engineers will immediately draw upon a set of
rules that guide the design activity.

4. Exemplar prototype knowledge bases that describe a specific instance of an
object type or solution to a sub-problem. Exemplary prototypes can be
instances of vertical or horizontal prototypes, such as a particular fortification
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(e.g., bunker) or a specific type of artillery mount. Decision- makers often
refer to exemplary prototypes in exploring solution alternatives to sub-
problems.

5. Experiential knowledge bases that represent the factual prescriptions,
strategies and solution conventions employed by the decision-maker in solving
similar kinds of problem situations. Such knowledge bases are typically rich in
methods and procedures. For example, a particularly memorable experience
such as the deciding event in a past business negotiation or the turning point of
a military offensive, may provide the basis for a solution method that is
applied later to create a similar experience in a new problem situation that may
be quite different in most other respects. In other words, experiential
prototypes are not bound to a specific type of problem situation. Instead,
they represent techniques and methods that can be reproduced in various
contexts with similar results. Experiential knowledge is often applied in very
subtle ways to guide the solution of sub-problems (e.g., a subterfuge in a
military maneuver that is designed to mislead the enemy).

The volume of prototypical information is potentially overwhelming. However, the more
astute and experienced decision-maker will insist on taking time to assimilate as much
information as possible into the problem setting before committing to a solution theme.
There is a fear that early committal to a particular solution concept might overlook
characteristics of the problem situation that could gain in importance in later stages, when
the solution has become too rigid to adapt to desirable changes. This reluctance to come to
closure places a major information management burden on the problem solver. Much of
the information cannot be specifically structured and prepared for ready access, because
the needs of the problem solver cannot be fully anticipated. Every step toward a solution
generates new problems and information needs (Simon 1981).

3.2.2  The 'Representation' Element

The methods and procedures that decision-makers utilize to solve complex problems rely
heavily on their ability to identify, understand and manipulate objects (Figure 21). In this
respect, objects are complex symbols that convey meaning by virtue of the explicit and
implicit information that they encapsulate within their domain. For example, military
strategists develop operational plans by reasoning about terrain, weather conditions,
enemy positions, weapon assets, and so on. Each of these objects encapsulates
knowledge about its own nature, its relationships with other objects, its behavior within a
given environment, what it requires to meet its own performance objectives, and how it
might be manipulated by the decision-maker within a given problem scenario (Figure 22).
This knowledge is contained in the various representational forms of the object as factual
data, relationships, algorithms, rules, exemplar solutions, and prototypes.

The reliance on object representations in reasoning endeavors is deeply rooted in the
innately associative nature of the human cognitive system. Information is stored in long-
term memory through an indexing system that relies heavily on the forging of association
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paths. These paths relate not only information that collectively describes the meaning of
symbols such as 'helicopter', 'rifle' and 'truck', but also connect one symbol to another.
The symbols themselves are not restricted to the representation of physical objects, but
also serve as concept builders. They provide a means for grouping and associating large
bodies of information under a single conceptual metaphor. In fact, Lakoff and Johnson
(1980) argue that "...our ordinary conceptual system, in terms of which we both think and
act, is fundamentally metaphorical in nature...". They refer to the influence of various
types of metaphorical concepts, such as 'desirable is up' (spatial metaphors) and 'fight
inflation' (ontological or human experience metaphors), as the way human beings select
and communicate strategies for dealing with every day events.

COMPLEX OBJECTS

CLIMATE
OBJECT BUILDING

OBJECT

ECONOMY
OBJECT

VEHICLE
OBJECT

       

REPRESENTATION

HIGH LEVEL 
OBJECTS

PHYSICAL
(e.g., Target, Weapon, 
Enemy Unit)

CONCEPTUAL
(e.g., Strategy, 
Security, Stealth)

METAPHORICAL
(e.g., Image, Power, 
Loyalty)

COMPREHENSIVE
DESCRIPTION
GEOMETRY (if any)

LOCATION (if any)

CHARACTERISTICS

RELATIONSHIPS

Figure 21: Symbolic Reasoning with Objects Figure 22: The 'Representation' Element

Problem solvers typically intertwine the factually based aspects of objects with the less
precise, but implicitly richer language of metaphorical concepts. This leads to the
spontaneous linkage of essentially different objects through the process of analogy. In
other words, the decision-maker recognizes similarities between two or more sub-
components of apparently unrelated objects and embarks upon an exploration of the
discovered object seeking analogies where they may or may not exist. At times these
seemingly frivolous pursuits lead to surprising and useful solutions of the problem at
hand.

Referring again to our previous discussions of this topic (see Sections 1.4.5 and 2.3.2) the
need for a high level representation is fundamental to all computer-based decision-support
systems.  It is an essential prerequisite for embedding artificial intelligence in such
systems, and forms the basis of any meaningful communication between user and
computer. Without a high level representation facility the abilities of the computer to
assist the human decision maker are confined to the performance of menial tasks, such as
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the automatic retrieval and storage of data or the computation of mathematically defined
quantities.  While even those tasks may be highly productive they cannot support a
partnership in which human users and computer-based systems collaborate in a
meaningful and intelligent manner in the solution of complex problems.

3.2.3  The 'Visualization' Element

Problem solvers use various visualization media, such as visual imagination, drawings and
physical models, to communicate the current state of the evolving solution to themselves
and to others (Figure 23). Drawings, in particular, have become intrinsically associated
with problem solving. Although the decision-maker can reason about complex problems
solely through mental processes, drawings and related physical images are useful and
convenient for extending those processes. The failings of the drawing as a vehicle for
communicating the full intent of the decision-maker do not apply to the creator of the
drawing. To the latter the drawing serves not only as an extension of long term memory,
but also as a visual bridge to its associative indexing structure. In this way, every
meaningful part of the drawing is linked to related data and deliberation sequences that
together provide an effectively integrated and comprehensive representation of the
artifact.
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Figure 23: The 'Visualization' Element Figure 24: The 'Communication' Element

From a technical point of view a great deal of headway has been made over the past two
decades in the area of computer-based visualization. However, without high level
representation capabilities even the most sophisticated computer generated images are
nothing but hollow shells. If the computer system does not have even the simplest
understanding of the nature of the objects that are contained in the image then it cannot
contribute in any way to the analysis of those objects. On the other hand, visualization in
combination with high level representation becomes the most powerful element of the
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user-interface of a decision-support system.  Under these circumstances, visualization
promotes the required level of understanding between the user and the computer as they
collaborate in the solution of the problem.

3.2.4  The 'Communication' Element

The solution of complex problems is typically undertaken by a team of decision-makers.
Each team member contributes within a cooperative decision-making environment that
relies heavily on the normal modes of social interaction, such as conversation, critique,
negotiation, and persuasion (Figure 24). Two aspects of such an interactive environment
are  particularly well catered for in computer-based systems. The first aspect relates to
the ability of computer-driven communication networks to link together electronically-
based resources located anywhere in the world or space.  Technical advances in the
communication industry have greatly enhanced the ability of individuals to gain access to
remotely distributed information sources, and to interact with each other over vast
distances. In fact, connectivity rather than geographical distance has become the principal
determinant of communication.

The second aspect is interwoven with the first by recent technological advances that
permit all types of information to be converted into digital form. Through the use of
digital switching facilities modern communication networks are able to transmit telephone
conversations and graphical images in the same way as data streams have been sent from
one computer to another over the past 30 years.

As a direct result of these advances in communication systems the convenient and timely
interaction of all of the members of a widely dispersed problem-solving team is
technically assured. It is now incumbent on software developers to produce computer-
based design systems that can fully support cooperative teamwork that is neither
geographically nor operationally limited. Such systems will integrate not only computer-
based information resources and agents, but also multiple human agents (i.e., users) who
will collaborate with the computer-based resources in a real-time interactive environment.
While the basic technology for this level of communication is already in place further
advances are expected in the area of transmission speed and the computer system
software that will facilitate message passing within heterogeneous networks in a user-
transparent fashion.

3.2.5  The 'Reasoning' Element

Reasoning is central to any decision-making activity. It is the ability to draw deductions
and inferences from information within a problem-solving context. The ability of the
problem solver to reason effectively depends as much on the availability of information,
as it does on an appropriately high level form of object representation (Figure 25).
Decision-makers typically define complex problems in terms of issues that are known to
impact the desired outcome. The relative importance of these issues and their
relationships to each other change dynamically during the decision-making process. So
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also do the boundaries of the problem space and the goals and objectives of the desired
outcome. In other words, the solution of complex problems is an altogether dynamic
process in which both the rules that govern the process and the required properties of the
end result are subject to continuous review, refinement and amendment (Reitman 1964
and 1965, Rittel and Weber 1984).

DECOMPOSITION
DEPENDENT

LARGELY
CONCURRENT

OBJECT-BASED
REPRESENTATION

INFORMATION
INTENSIVE

REASONING

            

DECISION-MAKING PROCESS

ANALYSIS

SYNTHESIS

EVALUATION

Figure 25: The 'Reasoning' Element Figure 26: Reasoning Methodology

As discussed previously, the complexity of a problem is normally not due to a high
degree of difficulty in any one area but the multiple relationships that exist among the
many issues that impact the desired outcome. Since a decision in one area will tend to
influence several other areas there is a critical need for concurrency. However, the
reasoning capabilities of the human problem solver are sequential in nature. Accordingly,
decision-makers find it exceedingly difficult to consider more than three or four issues at
any one time. In an attempt to deal with the concurrency requirement several strategies
are commonly employed to reduce the complexity of the reasoning process to a
manageable level.

♦ Constraint Identification:  By sifting through the available information
the problem solver hopes to find overriding restrictions and limitations
that will eliminate knowledge areas from immediate consideration.

♦ Decision Factor Weighting: By comparing and evaluating important
problem issues in logical groupings, relative to a set of predetermined
solution objectives, the decision maker hopes to identify a smaller number
of issues or factors that have greater impact on the final solution. Again,
the strategy is to reduce the size of the information base by early
elimination of apparently less important considerations.
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♦ Solution Conceptualization: By adopting early in the decision-making
process a conceptual solution, the problem solver is able to pursue a
selective evaluation of the available information. Typically, the problem
solver proceeds to subdivide the decision factors into two groups; those
that are compatible with the conceptual solution and those that are in
conflict. By a process of trial and error, often at a superficial level, the
problem solver develops, adapts, modifies, re-conceives, rejects and, often,
forces the preconceived concept into a final solution.

In complex problem situations reasoning proceeds in an iterative fashion through a cycle
of analysis, synthesis and evaluation (Figure 26).  During the analysis stage (Figure 27)
the problem solver interprets and categorizes information to establish the relative
importance of issues and to identify compatibilities and incompatibilities among the
factors that drive these issues.

DETERMINATION
OF RELATIONSHIPS

ESTABLISHMENT OF 
COMPATIBILITIES

DATA ASSEMBLY
AND REVIEW

IDENTIFICATION
O F FACTORS

CLASSIFICATION 
OF FACTORS

     

ESTABLISHMENT OF 
SOLUTION 

BOUNDARIES

COMBINATION
OF NARROW
SOLUTIONS

DEVELOPMENT OF
NARROW SOLUTIONS

DEVELOPMENT 
OF BROADER 
SOLUTIONS

   Figure 27: Analysis Stage of Reasoning Figure 28: Synthesis Stage of Reasoning

During synthesis (Figure 28) solution boundaries and objectives are continuously
reexamined as the decision-maker develops narrow solutions to sub-problems and
combines these narrow solutions into broader solutions. Initially, these solution attempts
are nothing more than trial balloons; - explorations based on the development of the
relationships among the principal issues and compatible factors identified during the
analysis stage.  Later, as the problem-solving activity progresses, firmer conceptual
solution strategies with broader implications emerge.  However, even during later cycles
these solution strategies tend to be based on a limited number of issues or factors.

During the evaluation stage (Figure 29) the decision-makers are forced to test the current
solution strategy with all of the known problem issues, some of which may have been
considered only superficially or not at all during the formulation of the current solution
proposal. This may require the current solution concepts to be modified, extended or
altogether replaced.  Typically, several solution strategies are possible and none are



CADRC, Cal Poly, San Luis Obispo, CA 93407:  Technical Report CADRU-11-97 (Jan. '97, 3rd Printing Apr’03)

60

completely satisfactory.  Archea (1987), in his description of the architectural design
activity, refers to this activity as "...puzzle-making...", suggesting by implication that the
decision maker utilizes the reasoning cycle more as a method for exploring the problem
space than as a decision making tool for forcing an early solution.
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3.2.6  The 'Intuition' Element

Donald Schon (1983 and 1988) has written extensively about the intuitive aspects of
decision-making. Although he focused primarily on engineering design as an application
area, his views provide valuable insight into the solution of complex problems in general.
Design has all of the common characteristics of complex problem situations, and some
additional ones such as the desire for solution uniqueness, that make it a prime candidate
for computer-based assistance (Pohl et al.1994).

In Schon's (1988) view designers enter into "...design worlds..." in which they find the
objects, rules and prototype knowledge that they apply to the design problem under
consideration. The implication is that the designer continuously moves in and out of
design worlds that are triggered by internal and external stimuli. While the reasoning
process employed by the designer in any particular design world is typically sequential
and explicitly logical, the transitions from state to state are governed by deeper
physiological and psychological causes. Some of these causes can be explained in terms of
associations that the designer perceives between an aspect or element of the current state
of the design solution and prototype knowledge that the designer has accumulated
through experience. Others may be related to emotional states or environmental stimuli, or
interactions of both (Figure 30).

For example, applying Schon's view to the broader area of complex problem solving, a
particular aspect of a problem situation may lead to associations in the decision-maker's
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mind that are logically unrelated to the problem under consideration. However, when the
decision-maker pursues and further develops these associations they sometimes lead to
unexpected solutions. Typically, the validity of these solutions becomes apparent only
after the fact and not while they are being developed. In popular terms we often refer to
these solutions as 'creative leaps' and label the author as a brilliant strategist. What we
easily forget is that many of these intuitions remain unrelated associations and do not lead
to any worthwhile result. Nevertheless, the intuitive aspect of decision making is most
important. Even if only a very small percentage of these intuitive associations were to
lead to a useful solution, they would still constitute one of the most highly valued
decision-making resources.

The reasons for this are twofold. First, the time at which the decision-maker is most
willing to entertain intuitive associations normally coincides with a most difficult stage in
the problem solving process. Typically, it occurs when an impasse has been reached and
no acceptable solution strategy can be found. Under these conditions intuition may be the
only remaining course of action open to the decision-maker. The second reason is
particularly relevant if there is a strong competitive element present in the problem
situation. For example, in command and control situations during the execution of military
operations. Under these circumstances, strategies and solutions triggered by intuitive
associations will inevitably introduce an element of surprise that is likely to disadvantage
the adversary.

The importance of the 'intuition' element itself in decision-making would be sufficient
reason to insist on the inclusion of the human decision-maker as an active participant in
any computer-based decision system. In designing and developing such systems in the
CADRC over the past decade we have come to appreciate the importance of the human-
computer partnership concept, as opposed to automation. Whereas in some of our early
systems (e.g., ICADS (Pohl et al. 1988) and AEDOT (Pohl et al. 1992)) we included
agents that automatically resolve conflicts, today we are increasingly moving away from
automatic conflict resolution to conflict detection and explanation. We believe that even
apparently mundane conflict situations should be brought to the attention of the human
agent. Although the latter may do nothing more than agree with the solution proposed by
the computer-based agents, he or she has the opportunity to bring other knowledge to
bear on the situation and thereby influence the final determination.



CADRC, Cal Poly, San Luis Obispo, CA 93407:  Technical Report CADRU-11-97 (Jan. '97, 3rd Printing Apr’03)

62



CADRC, Cal Poly, San Luis Obispo, CA 93407:  Technical Report CADRU-11-97 (Jan.’97; 3rd Printing Apr’03)

63

4.  ICDM: An Application Development Framework

Over the past several years the Collaborative Agent Design Research Center (CADRC) at
Cal Poly has developed a framework for implementing distributed, collaborative, multi-
agent applications. We refer to this framework as the Integrated Cooperative Decision
Making (ICDM) model. From a conceptually viewpoint, ICDM comprises an object-
serving communication and coordination facility that integrates multiple computer-based
agents and human agents (i.e., users) within a distributed knowledge-based environment
(Figure 31). It consists of three principal components, shown schematically in Figure 32,
as: a distributed database management system (DBMS) that has progressively evolved to
provide at least some of the capabilities described in Section 4.2; a decision making
advisory facility that coordinates various types of computer-based agents; and, multi-
media user-interfaces through which human agents can interact with all components of the
system and orchestrate the decision-making activities toward an acceptable solution.

4.1  The ICDM Model

The ICDM model is a collection of tools, application development experiences, and
implementation conventions, that continue to evolve and grow with every new
application (Myers and Pohl 1994). Each implementation results in refinements,
additions, deletions, and revisions of not only the physical parts but also the concepts
and conventions embodied in the ICDM framework. In this respect each ICDM
implementation is an experiment that yields a rich set of results for future
implementations.
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  Figure 31: The ICDM Architecture          Figure 32: Principal ICDM Components

The decision-making advisory facility, shown schematically in the center of Figure 32, is
the active core of any ICDM implementation. While the specific implementation design
details may vary from application to application, from a conceptual viewpoint it
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typically consists of several computer-based agents that interact with each other and the
user(s) in a collaborative fashion. It is the primary responsibility of the agents to assist
the human decision-maker(s) by monitoring, interpreting, testing, and evaluating the
current solution state, and also by proposing solution strategies and alternatives. The
current state of the solution and the problem context is normally held in memory, in some
suitable format such as a semantic network of frames or objects that can be readily
accessed by the agents. Although, in early implementations of the ICDM framework, the
agents were mostly constructed as rule-based expert systems (Figure 33) this is not a
requirement. Today, we typically take advantage of the flexibility and development speed
provided by rule-based shells such as CLIPS (NASA 1992) for rapid prototyping and
utilize object-oriented languages such as C++ (Stroustrup 1987) for end-user products.
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Figure 33: Rule-Based Agent Format Figure 34: Conceptual Structure of an Agent

The agents are connected to the current state of the problem through an object-serving
facility (i.e., referred to as Communication Facility in Figure 31) that automatically sends
changes in the problem state to the appropriate agent, and allows agents to post the
results of their actions onto the semantic network (Figure 35). Only those changes in
information that are relevant to the responsibility domain of a particular agent are sent to
that agent. This filtering is usually accomplished in a simple manner by requiring each
agent to register with the system the type of information that it wishes to deal with.

In the case of service-agents, which are typically domain specific, the number and
capabilities of the agents required in a particular domain depend largely on the level of
detail involved in a given problem-solving task. For example, during the early stages of
military mission planning when higher level conceptual warfighting strategies are being
formulated, the combat support services element (CSSE) may be represented by a single
agent capable of developing an overall logistical supply plan. During subsequent stages
and in particular during the execution stage, the more detailed CSSE monitoring and
support requirements will involve an increasing number of agents each responsible for a
specific subset of the logistics problem area. In other words, the more detailed the
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problem-solving task the more specialized the knowledge requirements of the
collaborating agents. However, regardless of the type of agent and the level of domain
specialization, each agent incorporates a communication adjunct that allows it to receive
and send messages (in object format), and any number of rules, algorithms and other
constructs that allow it to execute the tasks that it was designed to perform (Figure 34).
Typically, an agent receives information about the current state of the problem, evaluates
that information subject to its functional capabilities and knowledge, and sends the results
of its deliberations back to the semantic network. Once these agent results have been
posted on the semantic network they are immediately made available to other interested
agents.
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    Figure 35: Semantic Network of Objects Figure 36: Information Flow to Agents

The ICDM model assumes the existence of some form of coordination facility within the
decision-making advisory component. This facility may include one or more conflict
identification and/or resolution agents operating in either a centralized or distributed
mode. To what extent conflicts should be identified or resolved depends on the
application, and is not in any way dictated by the ICDM framework itself.

The operation of a typical ICDM advisory facility can be described as follows. The
current state of the problem situation (i.e., context and evolving solution) is represented in
terms of high level objects, such as aircraft, armored vehicle, observation post, or enemy
unit, and their relationships, in a semantic network (Figure 35). Each agent receives, on a
continuous basis, information updates from the semantic network. However, not all
available information is sent to all agents. A particular agent receives only the information
changes that relate to the template of information requirements that the agent has
registered with the system at that time (Figure 36). We look upon this as a subscription
service which maintains a subscription profile for each subscribing client.  Agents process
the information updates as they become available (Figure 37). If an agent has already
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started to work on information that is subsequently superceded by new information, then
the agent will abandon the current task at the first opportunity and recommence the task
with the new information. Our experience with past implementations of the ICDM
framework has shown that in a real-time execution environment with preemption (i.e.,
interrupt) capabilities the possible posting of results based on obsolete information, by an
agent, is acceptable. If the system is sufficiently responsive to changes in the current state
of the problem represented in the semantic network, then it will correct itself within one
or two message cycles.

There are two other advantages of the ‘subscription service’ concept that are related to
the underlying communication transmission facility. Particularly in military command and
control applications relying partly on wireless communication systems we must expect
severe bandwidth limitations and a high degree of operational unreliability. For example,
the EPLRS (Enhanced Positioning Location and Reporting System) and SINCGARS
(Single Channel Ground and Airborne Radio System) currently available to the Marine
Corps provide effective bandwidths of only 1000 and 300 b/sec, respectively. First, only
the changes in information need to be transmitted since each client incorporates context
information in its semantic network. Second, the object representation allows the
transmissions to be optimized to some degree.   
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Figure 37: Agents Receive New Information Figure 38: Agents Collaborate

The agents post their results on the semantic network where these results are now
available to all other agents that have interest in the new information. Among these might
be a 'conflict identification' agent that monitors disagreements among agents. In past
implementations of the ICDM framework it has been found preferable not to assign veto
power to a conflict identification and/or resolution agent, but allow the latter to enter into
an iterative dialog with the participating agents (Figure 38). The final action precipitated
by this dialog may be any one of the following:
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♦ Consensus is reached among the agents and the basis of the agreement is
implemented. In our experience we have found this to be the most common
outcome. In the practical implementation of multi-agent systems there are
several ways in which non-convergence can be detected and dealt with.
Foremost among these is the availability of the user to adjudicate and
impact the behavior of agents by setting parameters and priorities.  
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Figure 39: Conceptual View of a Typical ICDM Implementation

♦ The agents agree to disagree. In other words, acceptable tolerances of
disagreement can be built into the collaboration facility. For example, three
agents may agree on the existence of a single enemy target although each
agent has a slightly different value for the location of the target.
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♦ Disagreement on some issue by several agents is detected by a conflict
identification agent. The latter joins the discussion and either facilitates an
acceptable resolution of the conflict, or imposes a resolution strategy on
the agents. The imposition of a resolution may be acceptable in some
decision-support system applications under routine conflict conditions.

♦ The agents disagree and the conflict identification agent brings the situation
to the attention of the user, outlines the facts of the disagreement, and
proposes a possible courses of action to be taken by the user.
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Figure 40: Integration of Multiple Heterogeneous Databases

A conceptual, integrated view of the functional elements of the ICDM collaboration and
coordination facility described above is shown in Figure 39. In summary, the current state
of the problem situation is communicated to the agents subject to the information
interests currently registered by each agent with the coordination facility. The agents
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process the information that they receive, in near real-time, within the context of their
individual domains and objectives. The results of their deliberations are transmitted to the
coordination facility where they are posted on the semantic network for consideration by
the other agents. In the ensuing dialog among the agents conflicts are identified, discussed,
and resolved with or without user interaction. The purpose of the ICDM model is to
provide a development framework for cooperative and collaborative parallel decision-
support applications. Although each application may call for a somewhat different
implementation of the framework, the characteristics of concurrency, multi-tasking, near
real-time responsiveness, user interaction, and high level representation, remain as
common threads.

While many aspects of the ICDM model have evolved and changed over the past several
years, the CADRC's earliest conviction that human agents should play a major role in any
complex problem situation has grown progressively stronger. The problem solving
activity presumes an element of the unknown, a problem that has to be solved through a
decision-making process that cannot be completely predefined because of incomplete
information and dynamic information changes. Under such conditions, the ability of the
human partner to apply intuition (see Section 3.2.6) is arguably a necessary complement
to the logical capabilities of the computer-based agents.

4.2 Desirable Database Management Capabilities

One of the early targets of multi-agent systems is the integration of existing information
sources (i.e., databases and stand-alone, legacy programs) into comprehensive decision-
support systems. The initial focus of such efforts is the linkage of existing databases.
This is not a trivial task since these existing information resources typically were
implemented in many different ways. Consequently, any integrating system (including a
multi-agent system of the kind described here) will be required to support the conceptual
integration of a variety of data resource models. This can be accommodated through the
provision of several internal-level database representations, requiring a number of
additional mapping functions to link the internal and conceptual representation levels
(Figure 40). In this way, any externally linked database can be removed or replaced by
another database, simply by recoding the internal to conceptual level mapping. Since this
will not affect the external data representation, the user-interfaces built at the external
level will also remain unchanged.

The scope of database query facilities desirable for the kind of multi-agent, decision-
support environment discussed here far exceeds traditional database management system
(DBMS) functions (Figure 41).  They presuppose a level of embedded intelligence that
has not been available in the past. Some of these desirable features include: conceptual
searches instead of factual searches; automatically generated search strategies instead of
predetermined search commands; multiple database access instead of single database
access; analyzed search results instead of direct (i.e., raw) search results; and, automatic
query generation instead of requested searches only.
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A traditional DBMS typically supports only factual searches. In other words, users and
applications must be able to define precisely and without ambiguity what data they
require. In complex problem situations users rarely know exactly what information they
require. Often they can define in only conceptual terms the kind of information that they
are seeking. Also, they would like to be able to rely on the DBMS to automatically
broaden the search with a view to 'discovering' information.

  

DATABASE MANAGEMENT FUNCTIONS

TRADITIONAL

FACTUAL SEARCH

PREDETERMINED
SEARCH COMMANDS

SINGLE
DATABASE ACCESS

DIRECT
SEARCH RESULTS

REQUESTED
SEARCHES ONLY

DESIRABLE

CONCEPTUAL SEARCH

GENERATED
SEARCH STRATEGIES

MULTIPLE
DATABASE ACCESS

ANALYZED
SEARCH RESULTS

AUTOMATIC
DATA MONITORING

           

PROBLEM AREA

INFORMATION

SEARCH DOMAIN

RULE 1 RULE 2 RULE 3

Figure 41: Comparison of DBMS Features Figure 42: Conceptual Query Management

SEARCH
STRATEGY

GENERATOR

SEARCH
SCENARIOS
DATABASE

DIRECTED SEARCH
           

DATABASE DATABASE

DATA
STRUCTURE
INTERPRETER

D ATABASE

DATABASE
STRUCTURE

INTERPRETER

DATA
STRUCTURE

I NTERPRETER

DATA
STRUCTURE

INTERPRETER

 Figure 43: Search Strategy Generation Figure 44: Multi-Database Access Management



CADRC, Cal Poly, San Luis Obispo, CA 93407:  Technical Report CADRU-11-97 (Jan.’97; 3rd Printing Apr’03)

71

This suggests, in the first instance, that an intelligent DBMS should be able to formulate
search strategies based on incomplete definitions. It should be able to infer, from rather
vague information requests and its own knowledge of the requester and the problem
context, a set of executable query procedures (Figure 42). To facilitate this process the
DBMS should maintain a history of past information requests, the directed search
protocols that it generated in response to these requests, and at least some measure of the
relative success of the entire search operation (Figure 43).
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A traditional DBMS normally provides access to only a single database. A knowledge-
based decision-support environment is likely to involve many information sources,
housed in a heterogeneous mixture of distributed databases. Therefore, through the
internal-level database representations discussed earlier (Figure 40), the DBMS must be
able to access multiple databases. Using the mapping functions that link these internal
representations an intelligent DBMS should be capable of formulating the mechanisms
required to retrieve the desired data from each source, even though the internal data
structures of the sources may differ widely (Figure 44). Particularly when search results
are derived from multiple sources and the query requests themselves are vague and
conceptual in nature, there is a need for the retrieved information to be reviewed and
evaluated before it is presented to the requester (Figure 45). This type of search response
formulation facility has not been necessary in a traditional DBMS, where users are
required to adhere to predetermined query protocols that are restricted to a single
database.
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Finally, all of these capabilities (i.e., conceptual searches, dynamic query generation,
multiple database access, and search response formulation) must be able to be initiated
not only by the user but also by any of the computer-based agents that are currently
participating in the decision-making environment. These agents may be involved in any
number of tasks that require the import of additional information from external databases
into their individual knowledge bases (Figure 46).
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A conceptual model of an intelligent DBMS interface with the capabilities described
above is shown in Figure 47, and forms the basis of the following typical information
search scenario that might occur in an integrated and distributed, collaborative, multi-
agent, decision-support environment. Queries that are formulated either by the user or
generated automatically by a computer-based agent are channeled to a Search Strategy
Generator. The latter will query a Search Scenario Database to determine whether an
appropriate search strategy already exists from a previous search. If not, a new search
strategy is generated, and also stored in the Search Scenarios Database for future use. The
search strategy is sent to the Database Structure Interpreter, which automatically
formulates access protocols to all databases that will be involved in the proposed search.
The required access and protocol information, together with the search strategy, are sent
to the Directed Search Implementer, which conducts the required database searches. The
results of the search are sent to a Research Response Formulator, where the raw search
results are analyzed, evaluated and combined into an intelligent response to be returned to
the originator of the query.

The proposition that the DBMS interface should be able to deal with incomplete search
requests warrants further discussion. When searching for information, partial matching is
often better than no response.  In traditional query systems, a database record either
matches a query or it does not. A 'flexible query system', such as the human brain, can
handle inexact queries and provide best guesses and a degree of confidence for how well
the available information matches the query (Pohl et al. 1992 and 1994). For example, let
us assume that a military commander is searching for a means of trapping a given enemy
force in a particular sector of the battlefield and formulates a ‘something like a choke
point’ query. In a flexible query system a 'something like' operator would provide the
opportunity to match in a partial sense, such as: terrain conditions that slow down the
movement of troops; unexpected physical obstacles that require the enemy to abruptly
change direction; subterfuge that causes enemy confusion; and so on. These conditions
can all, to varying extent, represent ‘something like’ a choke point that would be validated
by a degree of match qualification.

Flexible query processing systems are fairly common.  For example, most automated
library systems have some level of subject searching by partial keyword or words
allowing users to browse through a variety of related topics.  Even word-processing
programs include spelling checkers, which by their very nature search for similar or
related spellings. However, even a flexible query system cannot automatically form
hypotheses, since the system does not know  what to ask for.

The ability to search for 'something like' is only a starting point. How can the system be
prompted to search for vaguely or conceptually related information? For example, how
can the system discover the intuitive connection between a physical choke point, such as
a narrow cross-corridor in a mountainous battlefield, and a precision fire maneuver aimed
at concentrating enemy forces in an exposed area. In other words, how can the system
show the commander that the precision fire maneuver option can satisfy the same intent
as the cross-corridor option.  In addition, the system must not overwhelm the commander
with an unmanageable number of such intuitive speculations. To discover knowledge it is
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necessary to: form a hypothesis; generate some queries; view and analyze the results;
perhaps modify the hypothesis and generate new queries; and, repeat this cycle until a
pattern emerges.  This pattern may then provide insight and advice for intuitive searches.
The goal is to automate this process with a 'discovery' facility that repeatedly queries the
prototype knowledge bases and monitors the reactions and information utilization of the
problem solver, until knowledge is discovered.
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5.  Military Decision-Support Applications

The information society is bringing changes that are being felt in all areas of human
endeavor. It is particularly evident that these changes are coming in rapid succession and
that many of the methods and systems that commerce, industry and government have
relied on in the past to deal with change and to support complex tasks are becoming less
and less effective.

Typically, major changes are made only when they can potentially bring major gains, or if
failure to change will result in severe penalties. In either case, major changes take time.
They usually require cultural changes and are best implemented incrementally.  The
implementation process is complicated by the human behavioral tendency under
conditions of stress, such as a battlefield, to revert to the old paradigm. Clearly, therefore,
changes are unsettling. They require the human cognitive system to adapt to new
conditions, to reevaluate relationships, beliefs and solution strategies. In short, as
discussed previously (see Section 2.2), this forces the human being into a situation where
past experience tends to lose some of its value and risks have to be taken to develop new
understandings and generalizations to form the basis for new experience.

Viewed from an optimistic stance, changes provide new opportunities. In fact, the more
changes the more opportunities. These opportunities are not restricted to technical
advances and solutions, but are equally prominent in management areas that involve the
organization and orchestration of groups of persons to collectively accomplish a goal.
Integration, cooperation, persuasion, and motivation are key elements that acquire new
meaning in a rapidly changing environment. The military services, in particular, are
confronted with societal and technical changes that will have profound influence on the
design, implementation and operation of their planning, execution and training systems. In
reference to Figures 48 and 49, prominent among these changes are the following:

♦ Increasingly, the US military forces will be based in the Continental United
States (CONUS), although most of their missions will take place outside
CONUS. This places a great deal of emphasis on rapid deployment
capabilities, as well as integrated, reliable communication and coordination
facilities.

♦ Increasingly, the US military forces will be involved in joint operations,
often involving foreign countries as allies. This requires an unprecedented
level of coordination, flexibility, interconnectivity, global sensitivity and
knowledge (e.g., foreign languages), training, and standardization.

♦ Increasingly, the value of human life is becoming a major factor in US
military operations. Casualties are a liability with severe political
repercussions. Effective protection of the warfighter is a difficult and
expensive proposition.
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♦ A large percentage of missions, whether humanitarian or military, will
involve smaller forces that may be widely dispersed.  Small units (e.g.,
squads of six to eight soldiers) and individual soldiers will be required to
perform functions that are currently accomplished by specialized support
personnel. Effective, fail-proof communication, near real-time collaboration
and coordination, and computer-based, intelligent decision-making
assistance are essential prerequisites for such missions.

CONUS-Based Forced are Increasingly 
Projected Overseas

Requires: rapid deployment capabilities
intransit cargo visibility
decision making assistance
integrated communications

Joint Operations Increasingly Involve Foreign 
Allies

Requires: high degree of coordination
global interconnectivity
standardized pract ices
knowledge (e.g., languages)

Missions will Increasingly Involve Smaller 
Forces

Requires: smaller dispersed units
real-time coordination
more sophisticated cargo

   

Planning, Execution, and Training are Integral 
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Advantages: real-time concurrency
meaningful training
reduced system costs

Communications Serve as Backbone of 
Intelligent Command and Coordination 
System with Real-Time Analysis, Advice, and 
action Capabilities

Advantages: intelligent assistance
real-time response
continuous monitoring

General Paradigm Shift from Quantity to 
Quality

Advantages: reduced transportation volume
more funds for fewer systems
more intelligent systems

Figure 48: Changing Military Context   Figure 49: Emerging Infrastructure Notions

♦ Planning, execution and training are being increasingly viewed as integral
functions that must be supported in one holistic communication and
collaboration system. The traditional separation of these functions into
distinct systems is expensive, fragmented, time consuming, and inefficient.

♦ There is an increasing recognition that communication should not be
restricted to chain of command protocols (US Army 1994). Data must be
available where needed, rather than controlled by ownership.  This
suggests a 'network' rather than 'hierarchical' approach to the design and
implementation of communication systems.

♦ Increasingly, computer-based decision-support systems are being viewed
as intelligent assistants in an interactive, near real-time human-computer
partnership. This is a direct outcome of the greater complexity of global
scale problems, the greater emphasis on rapid deployment, the need for the
small unit or individual soldier to respond rapidly to changing conditions
when operating in a dispersed mode in the theater, and the greater reliance
on individual initiative at all levels and in all direct and indirectly
supportive mission tasks.
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♦ There is a general shift from 'quantity' to 'quality' mandated by decreasing
budgets, the need to deploy rapidly, the increasing value placed on human
life, and the political impact of continuous media coverage.

Military missions and all of their supportive operations are by nature complex problems
involving intricate relationships among many variables, under conditions of uncertainty.
During all phases they are subject to dynamic information changes that impact both the
solution objectives and the strategies for orchestrating solutions.  Decision-makers at
every level must be able to understand and respond quickly to changing circumstances,
and this applies equally to planning and execution. Training becomes an integral
component of the decision-making process, allowing the decision-maker to simulate,
explore and experiment prior and during the actual operation.

5.1  Driving Forces, Responses, and Opportunities

The US Department of Defense (DoD) is moving aggressively to replace old methods and
decision-support systems with new concepts and systems that reflect current and
projected future societal changes and technological advances. In particular, DoD is intent
on leveraging the opportunities that these changes and advances offer.  Such efforts
cannot be confined to prudent planning activities that every organization undertakes on a
routine basis, but must respond to past and present experiences that demonstrate
increasing difficulties with the status quo. For example, decreasing budgets require
‘downsizing’. While ‘downsizing’ may have mostly negative connotations when viewed
within the context of past beliefs, it offers important opportunities for improving the
effectiveness of an organization and the quality of its services and products.

In recent years DoD has instituted several major programs aimed at taking advantage of
such opportunities. For example, during the past two decades DoD has experienced a
proliferation of computer-based decision-support systems in the tactical, logistical, and
administrative areas. Each of these systems requires funding for maintenance and support,
and most also receive substantial funding for development and enhancement purposes. In
most cases these systems were proposed and developed in response to specific needs, by
functional groups. Accordingly, emphasis was placed on meeting the specific needs of the
functional group rather than the overall system requirements of the organization.  Despite
the efforts of agencies charged with coordinating these individual system developments to
ensure that they would conform to system-wide plans, standards, and protocols, an
acceptable level of integration has not been achieved.  In fact, the coordinating agencies
have found it increasingly difficult to orchestrate the proliferating systems toward an
integrated global system.

To overcome this mounting problem DoD initiated a major program to evaluate existing
computer-based systems and select a smaller number of  'migration' systems that would
accommodate all of the required functions and replace the other systems.  This is an
important initiative with significant potential operational and economic benefits.  In
particular, this action can lead to a major reduction in funding requirements while
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increasing the funding resources that are available for the remaining 'migration' systems.  A
simple calculation can demonstrate this point.

Let us assume that there are currently about 40,000 (a very conservative estimate) major
computer-based decision-support systems used by the US military services. If we further
assume that the average cost of maintenance and development is $1 million per year for
each system, then the total annual direct cost of supporting these 40,000 major software
applications is $40 billion. Now, if after evaluation, these systems are reduced to 8,000
'migration' systems and even if we triple the annual maintenance and development funding
for each of the 'migration' systems to $3 million, then a net saving of $16 billion (40%)
has been achieved. However, potentially, a great deal more will have been accomplished.
The relatively small number of remaining systems can be extended, redesigned or replaced
with the additional funding that has become available, to achieve a much higher level of
integration and functionality.  Furthermore, the resulting integration effort provides an
opportunity for incorporating recent technological advances and system design concepts
into the system architecture. In particular, it becomes possible to redesign the overall
system architecture to be more amenable to technological advances and societal changes in
the future.

From a more general point of view, there are several concurrent forces that are converging
in similar directions.  The US Army and the US Marine Corps are currently reexamining
the way in which they propose to conduct military operations in the future.  Examples of
these efforts are the Army’s Force XXI (US Army 1995), the Marine Corps’ Sea Dragon
(Krulak 1996 and Bergman 1996), and the Small Unit Operations (SUO) task force of the
Defense Advanced Research Projects Agency (DARPA). In all cases these initiatives are
aimed at leveraging technological advances within the realities of a changing world context
to achieve more with less.

♦ Smaller, but more effective, forces in the theater; widely dispersed to
maintain control over larger areas; superbly equipped and well supported
through intelligent communication and coordination systems; capable of
exercising initiative and generating intelligence data.

♦ Integrated, intelligent communication and collaboration systems that are
not only capable of message passing and data collection, but are also
capable of analysis, reasoning, generating alternatives, determining
consequences, advising, and learning.

♦ Faster logistical deployment with continuous visibility of in-transit
equipment and supplies.

♦ Removal of the physical presence of human warfighters and support
personnel from all situations where they can be replaced by remote
communication and unmanned war machines.

♦ Better protection of the warfighter through protective uniforms, reactive
armor, noise and vibration mitigation, deception and cloaking, increased fire
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power, vision and surveillance support, real-time access to advice and
expertise from remote sources, flexible and fail proof communication, fail
proof navigation devices and support.

♦ Greater emphasis on training that is meaningful, based on real world
situations, and can be accessed by the individual soldier at any time in any
location (including the theater).

5.2  Desirable System Features

Several system requirements are readily discernible from the foregoing discussion.
Foremost among these is the need for integration. Neither the tactical nor logistical
support needs of Force XXI or Sea Dragon can be met without full integration of
command, communication, coordination, documentation, intelligence, and training
functions within one system umbrella. This umbrella system must have an open
architecture that allows growth and provides flexibility. It must facilitate the addition of
new modules and the replacement of existing modules in a manner that is transparent to
the users. These requirements point to a distributed architecture, incorporating object-
oriented concepts, with a great deal of internal connectivity and some degree of
redundancy.

The system must support a high level of parallel activity, even within the modules
supporting a particular functional area. The need for near real-time response capabilities is
incompatible with large deep simulation software packages that have to run their full
course once they have received the necessary input, and cannot be halted and/or redirected
as soon as new information that would change this course becomes available. A
cooperative system architecture that allows many smaller modules to continuously
interact with each other and collectively contribute to the decision-making process is more
likely to satisfy these response needs.

The need for users to interact with the system at all levels and under many different
circumstances, ranging from headquarters tactical planning to logistical execution to
communication with the warfighter in the theater, necessitates artificial intelligence. As
discussed previously (see Sections 1.4.5 and 3.2.2) a prerequisite for embedding artificial
intelligence capabilities in a system is the presence in that system of a high level
representation of the real world objects that the user reasons about.  Graphical images of
theater maps that are not represented in the computer system as objects (i.e., roads,
buildings, rivers, enemy units, etc.) are empty shells that cannot be used by the system to
automatically analyze consequences, generate alternatives, and provide advice. The lack of
a high level representation is the most serious limitation of the vast majority of software
systems used by the US military services today.  

Military users are increasingly suggesting system requirements, such as intuitive
interfaces, near real-time advice, analysis and interpretation capabilities, and virtual reality
training facilities, that indicate a desire for a human-computer partnership rather than
automation.  Within the context of current technological capabilities and anticipated near
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term advances, this desire can be satisfied.  This does not mean that we can build systems
today that emulate human behavior to a level that is comparable with actual human
capabilities.  What we can do is to design and implement a system architecture that will
support an evolving artificial intelligence capability. Even in its infant form this capability
will represent a substantial advancement over existing system capabilities, and over time
it will become more and more powerful and sophisticated.

The system must integrate functional divisions that are based on historical roots rather
than actual performance objectives and requirements.  In the past planning, execution, and
training functions have been treated as largely separate endeavors and have been
accommodated in separate systems.  These divisions are incompatible with the increasing
need for near real-time response to changing conditions, flexibility, faster deployment, and
continuous access to realistic training environments. The accelerating rate of change
precludes the luxury of planning and implementing in discrete, sequential steps. Instead,
planning and execution will merge, more and more, into parallel activities. Under these
circumstances the continued separation of planning and execution functions into separate
systems will become a serious source of delay, disruption, and ultimately failure.

The case for integrating training with planning and execution is just as strong. The
purpose of training is to prepare persons to deal effectively with future situations. If the
future situation can be accurately predicted and there is sufficient time to formally
describe and present this situation to the trainee, then there is no compelling reason to
integrate training with planning and execution.  However, in a changing environment
prepackaged training tends to lag well behind the actualities of application. The greater the
rate of change in the application arena, the further removed from reality and the less
effective the training becomes.  When the trainees recognize this disparity between what
is being taught and what can be expected to occur, they become less and less interested in
pursuing any of the prepackaged training activities.  As a result the training program loses
its effectiveness and the trainees are poorly prepared for the tasks that they are expected
to execute under real world conditions.

Apart from the performance advantages, the integration of planning, execution, and
training also offers potential cost benefits.  Although a system incorporating three
functional areas is intrinsically more complex than a system that accommodates only one
functional area, it greatly reduces the tendency for duplication both in respect to software
functionality and hardware facilities.  For example, the need to generate real world context
and data in a separate training system is a significant and costly requirement. If the
training function is integrated with the planning and execution functions then the real
world context and data also serve as the training environment.

5.3  Databases and Applications as Shared Resources

The existence of a global communication network provides opportunities for integration
that have not been available in the past. It allows integration to be addressed from a much
more general point of view, in respect to information sharing and accessibility rather than
the linkage of individual software applications (i.e., computer programs). In this view a
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database is not owned by any particular computer program, but is treated as a resource
that is available to any number of programs that are authorized to access this information
resource. The actual geographical and physical location of either the database or the
program that wishes to access the information contained in the database is immaterial.

However, there are two requirements that are of critical importance in this view of a
database as a shared resource.  First, the information stored in each database must
conform to a common vocabulary.  This ensures that the users of the information (both
human users and other computer programs) clearly understand the meaning of each
individual data element, and provides a basis for avoiding ambiguity and duplication.
Second, each information resource must make its data available in the format of an
'external view' (see Section 4.2 and Figure 40) that may differ significantly from the
internal data storage structure of the resource.  This obviates the need for imposing rigid
standards on the internal structural format of each database. Past attempts to enforce such
data storage standards have been singularly unsuccessful.  However, data access and
transmission standards (e.g., SQL, dxf, IGES, etc.) that provide an 'external view' of the
data have been readily adopted by industry and commerce.

The information that is shared in a distributed communication environment is not limited
to the data stored in databases. Individual software applications become generators of
information that may be stored in databases or, more often, will be shared directly with
other applications. In this respect a global command and control system can be viewed
simply as consisting of a large number of sharable resources.  Some of these resources are
databases that serve as depositories of dynamically changing data.  Others are software
applications that analyze, evaluate and generate views of combinations of data that are of
interest to users. The following advantages of such a distributed, but integrated,
cooperative command and control system are readily apparent:

♦ The notion of communication can be extended from the limited function of
data transmission, to the much more powerful functions of processing data
to information and applying artificial intelligence to assist in the cognitive
processes that transform information into knowledge. The human decision
maker working in partnership with the computer-based assistance
provided by the collaborative system is now able to focus on the
judgments that must be made to formulate decisions (Figure 50).

♦ The various software applications and their individual program modules
can operate in parallel (see Section 3.1.2 and Figure 18), sharing databases
and contributing the results of their analyses, evaluations and inferences to
each other and the users.  To take full advantage of this operational
concurrency the program modules must be designed to respond to changes
in data and new information in near real-time, opportunistically.  For
example, this means that the inter-process communication and
collaboration facilities must provide preemption (i.e., interrupt)
mechanisms, so that the individual program modules will automatically and
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continuously realign themselves to the current state of the dynamically
changing state of the problem situation.

♦ Hierarchically and sequentially controlled decision-making processes (see
Section 3.1.1 and Figure 15) that tend to result in fragmentation and delays
in 1st Wave software architectures are replaced by authorization protocols
that maintain security without impeding the flow of information, which is
critical to the decision-making environment.  In a networked system of
shared resources communication will not be constrained by chain of
command.  Necessary control is exercised through communication and
analysis of the problem situation, rather than restricting the activities and
contributions of personnel.
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♦ A great deal of meaningful and useful activity can take place at any node of
a distributed communication and collaboration system, thereby
encouraging the decentralizing of planning, execution and training
functions.  Decentralization is highly desirable for several reasons:
reduction of communication and decision-making bottle-necks;  accelerated
planning and failure recovery through redundancy; and, capture of near
real-time intelligence through strategically located local nodes.

In a distributed network of sharable resources planning, execution and training activities
are supported by multiple program modules that are able to access the required databases
and communicate with each other to exchange information and instructions that will
initiate the execution of the desired functions.  The program modules, therefore, must
incorporate the necessary inter-process communication facilities that allow them to send
and receive messages (e.g., information queries, results of evaluations, proposals, and
requests for services, in an object-based format), transmitted through the communication
network.

In this respect, the integration of the planning, execution and training activities is largely a
user-interface issue.  The user selects the desired mode of operation and specific data
sources (if any), to initiate a sequence of internal system activities that seamlessly access
those system resources that are required for the completion of the task.  It is a relatively
trivial matter to embed sufficient intelligence in the interface components for the system
to automatically infer, based on limited user-interaction, whether the user desires to
undertake a planning, execution or training task, and transmit the appropriate messages to
the component that is capable of completing this task.  These components may
themselves consist of multiple program modules that are capable of communicating among
themselves and with the outside world.  In this regard, the collaborative command and
control system  architecture resembles a conglomerate of multi-agent systems (see Section
2.3.2 and Figure 9), and an extension of the 2nd Wave multi-agent software paradigm
shown earlier in Figure 7 (see Section 2.3.2).

In each functional component the planning, execution and training functions are
accommodated either by separate program modules or alternative modes of execution of
the same module.  For example, the differences between planning and execution modes
may be accommodated both through internal software switches and the invocation of
additional agents.  When required to operate in a training mode, the appropriate
component would first interact with the user to determine the objectives and level of
training desired, select the appropriate training context, and then activate one or more
agents to monitor and assist the user during the training session.  Additional provisions
can be made for evaluating the performance of the trainee and capturing portions of the
training session for play-back and 'lessons learned' analysis.
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6.  ICODES: Ship Loading with Service-Agents

In 1994, the Collaborative Agent Design Center (CADRC) entered into a contract with
the US Navy on behalf of the Military Traffic Management Command (MTMC) of the
US Army to develop a ship stow-planning decision-support system that could meet the
logistical planning requirements of large scale  military deployments to overseas theaters.
Experience during the Desert Storm offensive had shown that existing legacy systems,
based on 1st Wave software technology (see Section 2.3.1), tended to perform poorly
under surge conditions. In particular it was found that these systems did not allow the
human decision-maker to react quickly to changing conditions, nor did they provide
adequate assistance to less experienced users.  

Ship stow-planning is the process of planning the loading, placement and unloading of
cargo on ocean-going vessels and barges. Cargo stowage and mobilization planning
expertise takes years to develop and the US Department of Defense (DoD) is losing this
experience due to downsizing and retirement of personnel. MTMC, as DoD's single
traffic manager for military cargo moving through the Defense Transportation Network
(DTN), commissioned the CADRC to design and develop a knowledge-based planning
system to provide mobilization and cargo planners with intelligent assistance throughout
the stow-planning process.

6.1  Ship Stow-Planning as a Complex Problem

The rapid deployment of military assets from the US to overseas (OCONUS) locations is
a complex undertaking. It involves the movement of large numbers of tracked and wheeled
vehicles, weapon systems, ammunition, power generation and communication facilities,
food supplies, and other equipment and goods, from military bases to the area(s) of
operation. Several modes of transportation are typically involved. Depending on the
location of the military base the assets are preferably moved by road to the nearest
railhead, from where they are loaded onto rail cars for transportation to the port of
embarkation (POE). Alternatively, if rail transportation is not an option, all of the cargo
must be shepherded through the public road corridor from the base to the port. At the
POE the assets are briefly assembled in staging areas and then loaded onto vessels for
shipment. Points of debarkation (POD) may vary widely from a commercial shipping
port with fairly good facilities to an amphibious landing on a hostile shoreline under fire.

Speed and in-transit visibility are of the essence (Figure 51). The total time required for
the deployment becomes a critical factor in the development of the overall mission plan.
There is a strong desire to reduce the in-transit time first from weeks to days, and then
from days to hours. While faster ships can reduce voyage times by several days, the rapid
movement of cargo through each node of the transportation infrastructure is equally
important. This can be achieved only through sound planning, rapid response to changes,
and a high degree of integration. At the same time there is a need for commanders to know
precisely where their assets are located at any time, so that they are not unduly inhibited
by logistical constraints in the modification of mission plans before and during execution.
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This necessitates an integrated, communication-based documentation system that tracks
each cargo item from origin to destination. Currently, MTMC supports this function
through the Worldwide Port System (WPS), which transmits updated cargo lists and
manifests from node to node within the transportation system.
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The CADRC was asked to focus on the stow-planning operations that occur at the POE.
As shown in Figure 52, ship load-planning has many of the characteristics of a complex
problem situation. First, there are continuous information changes. The vessel that arrives
at the port may not be the vessel that was expected and that had been planned for. This
means that the existing stow-plan is no longer applicable and a new plan has to be
developed. Similarly, last minute cargo changes or inoperative lifting equipment (e.g.,
cranes) may require the existing plan to be modified or completely revised.

Second, there are several complex interrelationships. The cargo on any one ship may be
destined for several ports of debarkation (PODs), requiring careful consideration of
loading and unloading sequences. However, these sequences must take into account
unloading priorities that may be dictated largely by tactical mission plans. In addition, the
placement of individual cargo items on-board the ship is subject to hazardous material
regulations and practices. These regulations are voluminous, and complex in themselves.
At times they are subject to interpretation, based on past experience and detailed
knowledge of maritime risks and practices.

Third, there are many constraints and limitations. Some of these constraints are static and
others are dynamic in nature. For example, depending on the regional location of the port
external ship ramps may not be operable under certain tide conditions. Local traffic
conditions, such as peak hour commuter traffic and rail crossings, may seriously impact
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the movement of cargo into staging areas or from staging areas to the pier. While these
constraints are compounded whenever loading operations occur concurrently, the general
complexity of the stow-planning problem is exacerbated by the number of parties
involved. Each of these parties plays an important role in the success of the operation,
but may have quite different objectives. Certainly, the objectives of the Union-governed
commercial stevedore crews that carry out the actual loading tasks are likely to differ
markedly from the prevailing military objectives (e.g., rapid loading and unloading
operations, safety, unit integrity, load density, documentation accuracy, and security).

6.2  Objectives of the ICODES Prototype

The CADRC was asked to apply its ICDM model to the development of an integrated
planning environment in which cooperating agents continuously assist human operators in
the ship load-planning activity. Specifically, it was proposed to develop a proof-of-
concept system that would demonstrate the feasibility and nature of a tool that could
effectively assist ship stow-planners by providing timely advice based on expert
knowledge and actual experience (i.e., lessons learned). The resulting proof-of-concept
Integrated Computerized Deployment System (ICODES) was developed in five months
to the following specified performance characteristics:

♦ Increased productivity by providing greater speed and/or the ability to
develop and evaluate alternative solutions. Specifically, it was
stipulated that ICODES should be able to support the load planning of
up to four ships concurrently, in the same session.

♦ Higher quality plans by predicting problems and preventing their
occurrence.

♦ Improved responsiveness to unplanned changes and unforeseen
contingencies.

♦ Facilitation of the cargo placement task during the stow-planning
process by providing intelligent assistance and automatic options to
the human ship stowage operator.

♦ Ability to serve as a training simulator for new ship stowage operators.

♦ Provision of a user-friendly, graphic (multi-media) user-interface.

6.3  System Description and Architecture

The ICODES proof-of-concept system consists of a centralized data-blackboard, a CAD
(Computer-Aided Drawing) engine, two user-interface modules, 10 rule-based agents, and
a multi-media (video) facility. The implementation design emphasizes local decision-
making, distributed processing, collaborative problem solving, user-computer interaction,
computer-based assistance, visualization through multi-media capabilities, connectivity,



CADRC, Cal Poly, San Luis Obispo, CA 93407:  Technical Report CADRU-11-97 (Jan.’97; 3rd Printing Apr’03)

88

and integration. The agents interact with the data-blackboard by sending and receiving
information to and from a frame-based semantic network, maintained by the blackboard
(Figure 53). All of the rule-based components are written in the CLIPS (NASA 1992)
expert system shell language, and the procedural components are written in the C++
language (Stroustrup 1987). The data-blackboard, main user-interface, and message
passing facility are compiled together into a single process with CLIPS as an embedded
component (Figure 54).
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AutoCAD (Autodesk 1993) was selected to provide the drawing facilities required of the
proof-of-concept system, primarily in order to easily incorporate the existing cargo and
ship diagrams.  ZINC (Zinc 1993), a graphic user-interface development package, was
selected to provide rapid design of dialogue and menu presentation and processing, in
particular since it can produce both X-Window (Scheifler and Gettys 1992) and Motif
(Gregory 1992) code from the same source. Further, the RogueWave class library for C++
(Rogue Wave 1992) was selected to provide the platform for working with the C++ code
produced by ZINC; and to also provide efficient object level programming support for
the interface coding itself.

These software packages can support all of the individual requirements for a modern
intuitive interactive graphic user-interface. Unfortunately, their integration within a single
process is a complex task. For example, the X-Window code used to support Motif
utilizes an event queue to monitor all X-Window events. However, the ZINC package
provides another event queue for its own events. In order to obtain the proper actions
with X-Window and ZINC events it often became necessary to program the posting of
events in the second event queue when processing an event in the first event queue.

AutoCAD is less cooperative.  In order to request AutoCAD commands from within the
programming environment, as opposed to the AutoCAD interactive user command
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environment, it is necessary to make C function calls available through the AutoCAD
Development System (ADS). However, the ADS functions do not naturally support all
of the user command facilities. In addition, there is a high degree of overhead since ADS
creates calls to LISP functions that are native to AutoCAD execution. More importantly,
the ADS calls must be limited to discrete activities because AutoCAD is not receptive to
interruption while it is engaged in the execution of an ADS function. This means that
other concurrent actions within the ICODES system as a whole are stalled until an ADS
function has finished executing.

A greater problem is associated with the realization of a high degree of concurrence in
communication among the various components. The socket code available from earlier
ICDM models, for operation with a data-blackboard and general agents, works in a very
special way with X-Window. Ordinarily in an X-Window environment when there are no
current events the X-Window server becomes idle, waiting for an event.  In the ICDM
models it may be necessary for an agent to process the reception of a message, while it is
in this idle X-Window event state. This can be achieved by requiring X-Window to also
monitor socket events. Under these conditions X-Window will execute a socket message
handler when a message is received by an agent (i.e., X-Window waits for both socket
events and X-Window events). However, in the case of a CLIPS agent operating within
the ICDM framework the message handler activity is confined simply to the assertion of
facts into the fact-list of the agent. The handler does not cause the agent code to execute.
However, within the context of the ICDM model it is important that the agent executes
when a message is received, in order to maximize the concurrence of communication
within the system. The ordinary operation of X-Window requires the execution of the
message handler code, without giving control to the agent. Instead, X-Window waits for
an event. While it is possible to cause X-Window to execute the agent code, the
mechanism for doing this is not compatible with the manner in which ZINC operates.
Thus it became necessary to assert a kind of 'dummy' X-Window event from within the
message handler and use this 'dummy' event to force X-Window to execute the agent as
soon as possible after it receives a message.

Several other changes were made in the ICDM data-blackboard and its communication
mechanism. Some minor changes permitted new relationships and frame representations.
A major change was the decision to maintain all of the semantic network information in a
single CLIPS fact-list. Thus the conceptual notion of the semantic network being stored in
the data-blackboard is fully realized in the ICODES system.

In previous ICDM model implementations the semantic network facts were distributed to
the agents, but not necessarily retained in any one place. Even though the semantic
network is available in one CLIPS fact-list, its information is not immediately accessible
to the user-interface facilities. Yet the user-interface must be capable of producing
reports, such as lists of cargo items, from the information held within the semantic
network. In order to realize this need a special fact 'query' facility was developed in C++
(Stroustrup 1986). This facility allows facts that describe the report information to be
asserted from the C++ to the CLIPS portions of the user-interface. The assertion from the
C++ environment causes a single rule to fire in the CLIPS environment, which also
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contains the semantic network. The protocol involved guarantees that the rule executed
will invoke a user defined function that will in turn search the CLIPS fact-list for the
required information, and then build a RogueWave list object of the results. The list object
holding the results is then available to the C++ environment when it resumes execution.
This new facility permits hundreds of items to be retrieved from the semantic network in
a very short period of time.

The basic ICODES architecture, shown in Figure 55, features four principal processes as
follows: main user-interface; CAD interface; agents, executing within CLIPS processes;
and, X-Window system. The main user-interface couples the ZINC produced code,
additional C++ interface code, a CLIPS system  (i.e., 'uiclips' with an associated
knowledge base), and C code (referred to as the “communications adjunct” in Figure 55).
A few minor source code changes, user function differences, and knowledge base rule
variations exist in the different CLIPS processes identified as 'uiclips', 'cadclips', 'tsclips',
and 'agentclips'. Not only is it desirable, based on the distributed cooperative computing
philosophy, to have separate CLIPS processes but it is also efficient to customize the
various CLIPS executables for the tasks that they will perform. The 'uiclips' process is
quite unique in that it supports the data-blackboard, containing the semantic network. It
must therefore house the message router rules that collect the 'input templates' from the
agents connected to the blackboard and then distribute the semantic network items as
requested in the input template of each agent.

The communication between the processes is realized through UNIX sockets. The code
that supports the socket functions is written in the 'communications adjunct'. Since this
code is written in the C language, it was compiled with the C language source code that
makes up 'uiclips' and the C++ code that comprises the user-interface. Thus the entire
main user-interface can be viewed as C++ code (Figure 54).

The drawing interface consists of AutoCAD and its special set of ADS functions, more
ZINC and C++ interface code, the 'communications adjunct', and another minor
modification of CLIPS called 'cadclips'. This process is primarily concerned with the
presentation of graphic icons to represent ship and cargo items, and to generate frames
that provide the real world attributes relating to actions represented by the drawing
activities. For example, when a cargo item is placed into a ship compartment, this process
must send the appropriate facts, identifying the cargo item and its location, to the
semantic network. The same process also monitors drawing related features such as the
intersection of cargo items with one another, the vessel, and the environment external to
the vessel. In both the main user-interface and the CAD interface processes there are
direct Motif calls for X-Window actions, primarily created through ZINC. This is
represented by the clear X-Window oval box in Figure 55.

The darker X-Window oval box represents the X-Window processing that is associated
with the 'dummy' events mentioned earlier. This processing is required to implement the
concurrent monitoring of messages received through sockets in the various processes, and
serves as a reminder that the communication facilities are related to the X-Window
system.
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The other processes in ICODES are used to implement agents. Most of the agents use the
same version of CLIPS, called 'agentclips'. An exception is made for the Trim and
Stability agent, which requires some special user functions. Also, it must be mentioned
that the Assisted-Stow agent does not exist as an independent process. Since Assisted-
Stow needs to work intimately with the drawing facilities, it is more efficient to load its
rules within the 'cadclips' knowledge base, which houses the User-Stow rules as well. The
resulting architecture provides an efficient implementation of the required components of
the ICODES proof-of-concept system.
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6.3.1  Data-Blackboard and Agents Interface

The data-blackboard is a CLIPS expert system that has several responsibilities.  First, it
serves as the repository of a semantic network of frames. In order to accomplish this
function the data-blackboard also includes communication facilities to all other processes
that require access to the semantic network. There are several methods, such as shared
memory, named pipes, and sockets, available for accommodating these communication
requirements. Since the socket code for this purpose was available for use from existing
mature ICDM implementations, it was employed in the ICODES prototype system.

Second, the data-blackboard incorporates a message router to distribute the semantic
network items to agents and in general to any processes that request a connection to it.
Each fact that is used in the frame representation of a semantic network item can be sent
via a socket to any process that is connected to the blackboard.  Agents that are CLIPS
expert systems will be interrupted by the reception of such messages and the facts will be
asserted into their fact-lists.  Non-CLIPS expert systems will receive the facts as strings.
Functions in C and C++ code can be called to translate the facts into the selected
representation within the non-CLIPS component.  Similarly, functions can be called in
any of the component environments to transmit a string-encoded fact to the data-
blackboard.  After receiving a message, the data-blackboard decodes the string and asserts
the CLIPS fact into its fact-list.

As discussed earlier, the ICODES architecture consists of multiple processes interacting
with one another via inter-process messages. Physically, each agent within the system is
connected with the data-blackboard via Internet sockets.  The use of Internet sockets
allows for site-independent communication.  Each agent monitors its own blackboard
connection for incoming communication.  Similarly, the blackboard monitors each of its
agent connections for incoming messages.  In all cases these incoming communications can
be processed immediately or buffered for processing at a later time.

The CLIPS process (i.e., 'tsclips' for the Trim and Stability agent, 'cadclips' for the Stow
agent, and 'agentclips' for all other agents) under which each agent executes consists of the
fact management and inference engine capabilities provided by CLIPS in addition to a
TCP/IP-based communication adjunct. The adjunct essentially provides its agent two-
way communication with the data-blackboard. Agents send messages to the blackboard
by issuing a call to a special 'assert' function added to the CLIPS shell. The syntax and
semantics of this call parallel the normal CLIPS assertion protocol with the exception that
the associated fact is asserted directly into the fact-list of the blackboard rather than the
fact-list of the agent.

Facts from the blackboard are received by agents in basically two ways. The first method
is through an explicit reception within a CLIPS rule, and the second method relies on
reception between rule-firings. In the latter case, at the completion of each rule-firing the
communication adjunct is queried for any pending messages. If a message exists, it is
processed immediately. Processing of all incoming messages takes the form of transparent
assertions to the receiver's fact-list. The receiver is notified of an incoming message by
having an appropriate rule placed on, or removed from, the current agenda.
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6.3.2  Semantic Network

In order for the expert systems (agents) to exchange data, they must share a common
representation of information (i.e., data and relationships). A frame-based representation
was used to represent objects and their attributes in the ICODES proof-of-concept
system. A frame is a collection of information about an object or a class of objects.  

In the ICODES frame management system three fact types define the different parts of
the object data; namely, FRAME, VALUE, and RELATION.  The FRAME fact
provides the class name and instance identifier that links the various attributes of an
object together.

        (FRAME  <class>  <instance>  <source>  <type>)

        where:  FRAME is a keyword;
                 <class> is the name of the class of this frame;
                <instance> is the frame identifier;
                <source> identifies the origin of the fact;

                <type> indicates the type of fact (i.e., whether
                      it is a 'suggested' or 'current' value).

The VALUE fact contains information about a particular attribute or slot of a FRAME
class.

        (VALUE  <class>  <instance>  <attribute>  <value1> [<value2> <value3>]
<source>  <type>)

        where:  VALUE is a keyword;
                <class> is the name of the class of this frame;
                <instance> is the frame identifier;
                 <attribute> is the slot name or attribute;

                <value1> <value2> <value3> contain the actual
                      value of this slot;

                <source> identifies the origin of the fact;
                <type> indicates the type of fact.

The RELATION fact is used to connect one FRAME with another FRAME.

        (RELATION  <relation-name>  <class1>  <instance1>  <class2>  <instance2> 
[<class3> <instance3>] <source>  <type>)

        where:  RELATION is a keyword;
                <relation-name> defines how the two FRAMEs are related;
                <class1> <class2> <class3> are class identifiers;

                <instance1> <instance2> <instance3> are instances
                      of <class1> <class2> and <class3>;
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                <source> identifies the origin of the fact;
                <type> indicates the type of fact.

In the following example the first fact (FRAME) specifies that there is a frame for the
class "vessel" which has "111" as its identifier. This fact was generated from the MARR
file and is currently valid. The second fact (VALUE) states that the name of the vessel
"111" is "Maersk Constellation".  The third fact (FRAME) specifies that there is a frame
for the class "deck" which has "222" as its identifier. The fourth fact (RELATION)
indicates that vessel "111" is related to deck "222" and that a "has_a" relationship exists
between the two frames. In other words, vessel "111" has a deck with an identification
code of "222".

     (FRAME vessel 111 MARR current)
     (VALUE vessel 111 shipname "Maersk Constellation" MARR current)
     (FRAME deck 222 MARR current)
     (RELATION has_a vessel 111 deck 222 MARR current)

6.3.3  Main User Interface

This Section describes the main user-interface component that provides user access to all
options other than the interactions with the AutoCAD drawing environment (Figure 56).
The separation of the CAD user-interface was dictated by representational requirements,
which are discussed later in Section 6.3.4.

To accommodate the fairly wide range of requirements and differing operational
preferences of stow-planners, the user-interface was designed to be flexible to any
sequence of events, and display information in a user-customizable format.  The
programming philosophy in which the user guides the system, and not vice versa, is often
referred to as 'user-driven'. In a user-driven environment the system does not dictate a
sequence of events to the user. Rather, all options are available to the user at all times, and
the system largely responds to actions that the user initiates.  

To realize these requirements, the user-interface must have dynamic access to all
information in the system at any given time. This requires an efficient method of
retrieving large amounts of information from the semantic network. These considerations
led to two major implementation design decisions for the ICODES proof-of-concept
system.  First, it was agreed that the blackboard should keep a local copy of the semantic
network. This provides a single location where all current information can be found at any
given time. Second, it was decided that the user-interface and the blackboard should be
compiled together as a single process. This allows the user-interface to gain direct access
to the entire semantic network without the overhead or complexity of inter-process
communication facilities.

While combining the blackboard and user-interface into one process solves several
performance problems, it introduces several others complications. The blackboard is
written in CLIPS, which is appropriate given the pattern-matching requirements of
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interacting with other system components.  However, the user-interface, being a largely
procedural program, requires a more procedurally-orientated language such as C++.  This
required the combination of CLIPS and C++ in the same process.  It also required that the
combined blackboard and user-interface process be simultaneously receptive to the user
through the user-interface, and to messages from other agents through the blackboard.

When information is required in the user-interface a special C++ function called
'runQuery' allows information of any type to be directly extracted from the CLIPS fact-
list.  The 'runQuery' function accepts queries, which are dynamically built in the user-
interface from user actions.  Upon completion of the 'runQuery' function, a list of the
specified information is returned to the user-interface and displayed for the user.  This
method of extracting information from the semantic network through the C++ component
of the combined blackboard and user-interface process is used by every functional
element of the user-interface that requires information from the semantic network.

Figure 56: Main Screen of the ICODES Prototype Application
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6.3.4  CAD User Interface and Stow Agent

The ability to embed intelligence in a computer-based decision-support system is largely
predicated on the existence in the system of a level of knowledge representation that is
similar to that employed by human decision-makers. In the stow-planning application
this requires that the system be capable of maintaining high level representations such as
vessel, compartment, crane, ramp, and cargo item. Existing commercially available CAD
systems, such as AutoCAD, do not understand such real world objects but are limited to
the recognition of lower level geometric objects such as points, lines and polygons.

One approach to solving this fundamental problem is to link the CAD system to a front-
end process that maintains the high level representation, through interaction with the user
and internal reasoning capabilities, and uses the CAD system simply as a drawing engine
(Myers et al.1993). Under these conditions the front-end process completely controls the
operation of the CAD system, sending instructions and receiving the results of the
execution of these instructions as the system or user environment dictates. AutoCAD
provides a programming interface (ADS) that can be used to drive its drawing functions
from an external process. This facility was used in the ICODES proof-of-concept system,
together with CLIPS and ZINC, for the manual (User-Stow) and automated (Assisted-
Stow) cargo placement functions. Accordingly, the CAD interface consists of ADS,
CLIPS and ZINC components that are combined into a single process. This process is
referred to as the Stow agent.

Interactions with AutoCAD comprise three distinct stages of execution:  the CLIPS stage;
the 'userfunctions' stage; and, the ADS stage. During the CLIPS stage the Stow agent
receives facts from the blackboard or its own CAD user-interface component, calls CLIPS
userfunctions, and then reasserts facts to the blackboard. All of the rules that handle these
operations are located in the 'stow.kb' knowledge base.  The facts sent from the
blackboard to the Stow agent use the key word 'CAD' to distinguish them from
blackboard communications to other agents. This allows the message router in the
blackboard to automatically send these facts to the Stow agent. The 'userfunctions' stage
consists of calling ADS functions and formulating facts that are then asserted into the
Stow agent's fact-list. The ADS stage handles all calls to ADS and API functions, takes in
all graphical input to the CAD system and typically returns a structure to the user-
function that called it.

If an action is initiated from the CAD user-interface, then facts are asserted into CLIPS
from the Stow agent process itself rather than from the blackboard.  Each time an item in
the CAD user-interface is selected a corresponding function is called which asserts a fact
into the Stow agent's fact-list. One of the few exceptions to this typical sequence of
events occurs in the case of the Assisted-Stow option.  Since the Assisted-Stow option is
an integral part of the Stow agent process, the rules that deal with the automatic
templating of cargo items are driven by local facts rather than those that come from the
blackboard. This eliminates the message passing overhead, thereby improving the
performance of the automatic templating function.
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6.3.5  The Accessibility Agents

The family of 'accessibility' agents is concerned with determining and reporting on the
ability of cargo items to access any ship compartment. The functionality of performing
this analysis task has been divided into several domains that are represented by the
following agents: Access; Cranes; Doors; Hatches; Ramps; and, Openings. Although these
agents are functionally related and cooperate closely with each other to analyze the
accessibility problem, they are nevertheless separate processes (Figure 57).

HATCHES
AGENT

OPENINGS
AGENT

RAMPS
AGENT

ACCESS
AGENT

DOORS
AGENT

CRANES
AGENT

     

LOAD CALCULATION

SHIP'S ARRIVAL
CONDITION ANALYSIS

STRESS ANALYSIS
TRIM ANALYSIS

STABILITY
ANALYSIS

Figure 57: The Accessibility Agents Figure 58: Trim and Stability Agent Functions

The Access agent assigns the access permissions based on information provided by the
other 'accessibility' agents.  If any of that information changes (e.g., if the dimensions of a
cargo item are updated at run time), the access permission is reexamined.  The Access
agent also indicates a violation when an item is placed into a compartment and access
permission is not set.

The Cranes, Doors, Hatches, Ramps, and Openings agents each examine the accessibility
of a cargo item into a compartment based strictly on the particular concerns of its domain.
For example, the Hatches agent determines only whether a cargo item is able to fit through
a hatch. It does not concern itself with the ability of a crane to lift the item into position
(the Access agent handles this coordination). Since cranes (or booms) may be married
together to produce the capability of lifting heavier items, the Cranes agent is also
responsible for determining which booms may be married together, what holds the
married booms can reach, and their combined weight limit.  The Cranes agent determines
all of the possible marriages and related information during system initialization. In
addition, the Cranes agent examines the following crane characteristics to determine
accessibility:

♦ the status of each boom;
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♦ the weight capacities of booms and cargo items, respectively;
♦ the holds that can be reached by each boom.

The Doors agent examines the following characteristics relating to doors and cargo items:

♦ the status of each door;
♦ the widths of doors and cargo items, respectively;
♦ the heights of doors and cargo items, respectively.

The Hatches agent examines the following characteristics relating to hatches and cargo
items:

♦ the status of each hatch;
♦ the widths of hatches and cargo items, respectively;
♦ the lengths of hatches and cargo items, respectively.

The Ramps agent examines the following characteristics relating to external ramps and
cargo items:

♦ the status of the ramp;
♦ the widths of the ramp and cargo items, respectively;
♦ the lengths of the ramp and cargo items, respectively;
♦ the capacity of the ramp and the weights of cargo items;
♦ the clearance of the ramp and the heights of cargo items.

The Openings agent examines the following characteristics relating to openings and cargo
items:

♦ the status of each opening;
♦ the widths of openings and cargo items, respectively;
♦ the lengths of openings and cargo items, respectively;
♦ the heights of openings and cargo items, respectively.

In the ICODES proof-of-concept system the 'accessibility' agents determine the access
permissions for all cargo items (i.e., whether a cargo item can be moved or lifted into any
compartment) as early as possible. The majority of these calculations are performed
during the system initialization stage, immediately after the cargo list has been loaded into
the semantic network. However, the addition of any new cargo items during execution
(such as items produced by a marriage) will automatically activate the 'accessibility'
agents to determine the full set of access permissions for the new cargo item.

Both the Access and Crane agents have reporting capabilities that are invoked by clicking
onto the status window of the particular agent. The Access agent report informs the user
whether a particular cargo model has access to a given compartment. It includes a list of
findings from each of the other 'accessibility' agents, to indicate precisely what access
permissions are available. The Crane agent report provides a list of booms that are
capable of lifting a particular cargo model into a given compartment (as identified by hold
and deck).  Instead of listing all possible boom combinations, it recommends what it
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considers to be the best boom marriages. For example, if a cargo model requires a two-
boom marriage, only two-boom marriages are listed (i.e., other possible marriages
involving more than two booms are not listed).

6.3.6  The Trim and Stability Agent

The Trim and Stability agent is capable of determining the 'arrival condition' of the vessel,
and continuously monitors the vessel during the stow-planning session by performing
load calculations, trim and stability analyses, and stress calculations (Figure 58). When
the Trim and Stability agent receives information that identifies the vessel from the data-
blackboard, it looks up trim and stability tables to obtain values for the required set of
variables, such as the ship's metacentric height (GM) requirement and the various vertical
center of gravity (VCG) values under different loading (weight) conditions. As the agent
receives information about the placement of cargo items, it calculates the cargo weight and
the VCG of the hold.  It also considers each of the ship's tanks and calculates the tank's
weight and VCG. Again, the trim and stability tables are used in these calculations.

At appropriate times, or when requested by the user, the agent posts the following
primary stability results on the semantic network:

♦ the ship's total weight (W);
♦ the ship's center of gravity from the keel (KG);
♦ the available GM;
♦ the GM required.

Trim calculations are performed in a similar manner.  Additional information about the
vessel is obtained from the trim and stability tables. This includes the light ship
longitudinal center of gravity - forward perpendicular (LCG-FP), the crew and store
LCG-FP, and the mean salt water draft.  Using the information gained from the data-
blackboard about the cargo in each hold, the Trim and Stability agent uses the trim and
stability tables to calculate each hold's LCG-FP.  For each of the ship's tanks it also uses
type and weight information from the data-blackboard to determine the tank's LCG-FP.
The results of these calculations are compared to the stability requirements of the ship
and the user is alerted if a safety violation is detected.

6.3.7  The Stow Agent

The Stow agent is capable of operating in two modes (Figure 59): as a manual cargo
placement tool (i.e., User-Stow); and, as an automatic prorating and templating facility
(i.e., Assisted-Stow). In the User-Stow mode the stow-planner selects a cargo item from a
textual cargo list and graphically drags it into the desired ship compartment displayed in
the CAD window. As soon as the cargo item has been positioned the agents, each in its
particular domain, analyze the cargo location in respect to its trim and stability impact,
accessibility, hazard infractions, and other placement violations. Functions are available to
allow the user to ‘move’ or ‘unstow’ the placed cargo item. During the placement task
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interference checking is performed by AutoCAD and the results are communicated via a
front-end ADS process to the data-blackboard, where they are posted on the semantic
network.

USER-CONTROLLED CARGO PLACEMENT

USER-STOW ASSISTED-STOW

MONITORED BY 
AGENTS
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       Figure 59: Stow Agent Functions                  Figure 60: Hazard Agent Functions

In Assisted-Stow mode the user specifies the decks and/or holds to be loaded, the target
area utilization percentage (i.e., percentage of each compartment to be filled with cargo, -
often referred to as the 'stow factor'), and any preferences or restrictions that should be
applied to the cargo. The Stow agent then proceeds to analyze the entire cargo list and all
ship compartments to determine its selection of cargo for the specified compartments.

By the time the Assisted-Stow operation is invoked, the Access agent has already
determined all compartments to which each model version has access. The type of access
is also known, that is, whether items can be rolled on/off, or if they must be lifted in
position. The prorating process then proceeds in four phases:

        Phase 1:  Preferred item placement.
        Phase 2:  Priority item placement.
        Phase 3:  Weight distribution placement.
        Phase 4:  Automatic templating.

During the 'preferred item placement' phase the Stow agent identifies all cargo items that
have been specified for preferred placement by the stow-planner. These items are placed
first. In phase 2, compartment(s) are selected for each item by consulting a priority fact-
list that lists the most desirable compartments for a particular model version. For
example, it may be generally preferred to tow rather than lift helicopters onto a ship,
hence the Stow agent will first select compartments on the RORO (i.e., roll-on roll-off)
deck. If there is no specific priority list for the cargo item or model version under
consideration then the Stow agent will consult a default list of compartments. The agent
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will attempt to place the cargo item in the first compartment selected. It checks to see if
the item has access, and if there is sufficient room (square footage) available in the
compartment. If these conditions are met, the item is assigned to the compartment, and
the total available square footage of the compartment is reduced by the cargo item's
footprint area. This continues until all preferred items have either been assigned to
compartments or cannot be assigned to any compartment.

In the 'priority item placement' phase cargo items are selected based on a priority ordering,
which takes into account the difficulty and/or sensitivity of each cargo item. The ranking
logic is based on advice received from expert stow-planners and includes the following in
descending order of restrictiveness:

1. hazardous material (excluding explosives);

2. sensitive cargo (e.g., weapons);

3. prioritized cargo that must be unloaded first (e.g., wreckers);

4. breakbulk (underdeck stow only);

5. breakbulk (oversized/on deck stow only);

6. lift-on only cargo (e.g., bridge sections);

7. helicopters and aircraft;

8. deadlined vehicles (i.e., vehicle cannot be moved);

9. deadlined vehicles (i.e., vehicle can be towed);

10. container without chassis;

11. steel tracked vehicles;

12. semitrailers with large kingpins;

13. semitrailers with standard kingpins;

14. oversized wheeled vehicles;

15. large wheeled vehicles with trailers;

16. large wheeled vehicles without trailers;

17. tracked vehicles;

18. light wheeled vehicles with trailers;

19. light wheeled vehicles without trailers.

In the 'weight distribution placement' phase the remaining cargo is placed so as to achieve
a satisfactory weight distribution. Cargo items are selected by weight, from heaviest to
lightest, and compartments are selected from the lowest to the highest deck. If more than
two-thirds of the total cargo weight has been placed on the bottom deck, no more items
are placed there. At the end of this placement phase, all cargo has either been assigned to a



CADRC, Cal Poly, San Luis Obispo, CA 93407:  Technical Report CADRU-11-97 (Jan.’97; 3rd Printing Apr’03)

102

compartment, or cannot be placed in any available compartment. Cargo that cannot be
placed is specified as CLOP (Cargo Left On Pier).

During the 'automatic templating' phase the Stow agent determines the actual placement
and coordinates for items within a particular compartment. Since the placement of cargo
items during the previous three phases has been subject to available area, on a square
footage basis, it is possible that during templating some items may not fit into a
compartment. Such items are then reclassified as CLOP. As the cargo item's coordinates
are determined, the items are placed into the ship drawing.

6.3.8  The Hazard Agent

The Hazard agent continuously monitors the placement of cargo items containing
hazardous material. It determines the validity of cargo placement relationships with other
hazardous cargo items.  If the Hazard agent concludes that a violation has occurred it
alerts the user by turning the surround of its status window red. The knowledge
embedded in the Hazard agent was derived from interviews with experienced stow-
planners and the Bureau of Explosives (BOE-6000-L) manual (Bureau of Explosives
1992). The types of placement violations that the Hazard agent is capable of detecting
(Figure 60) include:

♦ segregation incompatibilities among hazardous cargo classes;
♦ spacing requirements and restrictions;
♦ legal locations on board a vessel.

The Hazard agent operates in a reactive mode, responding to the cargo that has been
stowed on the ship. For example, if a breakbulk cargo item carrying acetylene (i.e., a
flammable gas) has been stowed in a compartment, and another cargo item containing
batteries (i.e., a corrosive chemical) is placed into the same compartment the Hazard agent
will check the distance between the two potentially hazardous cargo items to determine if
the separation requirements have been violated. If yes, then the agent's status window
alerts the user by turning red. The user may obtain a report with a detailed explanation of
the violation by clicking onto the agent's status window. In this case the Hazard agent will
indicate that a minimum separation distance of 20ft (6m) is mandated.

The Hazard agent is able to distinguish among similar regulations pertaining to different
locations (i.e., compartments) on the vessel. If the above example had occurred on the
weather-deck, which is exposed to the open air, then the hazard agent would take into
consideration that the segregation rules are more lenient. Furthermore, if the cargo items
carrying the hazardous material are classified as "transports" (e.g., trucks), then the
Hazard agent would also take into account the "container relationship".  It recognizes
both "open" (e.g., open truck bed) and "closed" (e.g., truck bed with closed cover)
container relationships, and understands the distance requirements that pertain to these
conditions. The Hazard agent is also able to analyze situations involving containers, such
as CONEX boxes and MILVANs, which contain hazardous material.  These situations
are computed in a similar manner to the "transports" classification.
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If a violation occurs the Hazard agent provides a report that describes the type of
violation and indicates:

♦ the locations of the incompatible hazardous cargo items;
♦ the severity of the violation;
♦ the determining factors of the violation;
♦ special provisions pertaining to any of the hazardous materials.

For instance, in the previous example involving a cargo item containing acetylene, the
Hazard agent's report would list three "other-provision" codes as follows:

        25  Shade from radiant heat;
        40  Stow "clear of living quarters";
        57  Stow "separated from" chlorine.

6.4  The ICODES End-User Application

Following the completion of the proof-of-concept system described in this Section the
CADRC entered into a three-year contract for the development and fielding of an end-
user product. The ICODES application was fielded for ‘beta’ testing in January 1997 and
is scheduled to be installed at MTMC ports during 1997/98. In the final product the
agents were recoded in the C++ language to maximize performance, and the ZINC graphic
user-interface development tool was replaced to avoid the potentially disruptive influence
of its event queue on internal communications.

(Editors Note:  Subsequently in 1999, ICODES Version 3 was fielded by the Military
Traffic Management Command (MTMC) to the US Army. This initial ICODES product
operated in a UNIX operating system environment on IBM Laptop computers  and
Hewlett-Packard workstations. During 2001 ICODES Version 3 was converted to execute
under the Microsoft Windows NT operating system environment on Personal Computer
(PC) workstations and Laptop computers. Also, during 2001 ICODES Version 4 was
extended to accommodate the load-planning requirements of the Marine Corps and the
Navy. Subsequently ICODES Version 5.2 was fielded to the Marine Corps at the end of
2002. ICODES Versions 5.1.6 and 5.2 were used as the system of record for the loading
of virtually all ships used during the Iraqi deployment. Today, in 2003,ICODES Version
5.3 executes in a Microsoft Windows 2000 operating system environment on PC Laptop
computers.)
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7.  FEAT: Military Planning with Multiple Service-Agent Systems

In 1994, the Collaborative Agent Design Research Center (CADRC) working jointly with
CDM Technologies, Inc., undertook the development of a proof-of-concept
implementation of the ICDM model in the military mission planning functional domain
for the US Marine Corps (MARFORPAC).  FEAT (Force Employment Analysis Tool),
like other ICDM applications, emphasizes the use of agents, or modules of specific
purpose and viewpoint, working in a collaborative manner within and, when appropriate,
across separate computers. The agents are cast in a supportive role to the human
decision-maker with the objective of monitoring user actions, presenting information in
meaningful ways, and providing advice.

7.1  Military Planning and Execution as a Complex Problem

Much has been written in the literature about the complexities of planning and execution
in warfare (Hayden 1995, Sawyer 1995, Schmitt 1994, Alexander 1993, Leonhard 1991,
Creveld 1986, Clausewitz 1976). It therefore suffices here to summarize the salient
characteristics (Figure 61). Military command and control is an information intensive
activity, involving many variables with strong interrelationships. The information sources
are typically widely distributed and subject to continuous change.
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Figure 61: Nature of Military Planning Figure 62: Military Planning System Objectives

Mission planning and execution are activities that are highly collaborative in nature,
involving many players within a tightly knit team structure. The information needs of the
individual team members are varied and often at least partially unpredictable. The reason
for unpredictability is that the solution strategies adopted during the problem solving
process determine to a large degree the kind of information required. For example, a
battlefield maneuver that depends on air support will require significantly different
information than one that utilizes naval fire support. Also, the information needs of the
decision-makers are often poorly matched by the available data. In other words, although
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the volume of available information may almost overwhelm the commander, the
information may be unevenly distributed with a lack of useful data in some areas and an
overabundance of data in other areas.

The relationships among the many variables, such as force availability and readiness
factors, logistical demand and supply, and enemy strategies and actions, tend to be
complex and subject to change. There is a high degree of uncertainty, not only in respect
to the dynamically changing nature of the problem situation, but also in respect to the
reliability and accuracy of the information itself. The constraints are also dynamic in
nature. For example, a particular enemy action may fundamentally change the logistical
supply capabilities of friendly forces. The time available to complete a planned maneuver
may be drastically shortened and no longer time constrained following the occurrence of
certain unforeseen events, or a sudden change in weather conditions may make it
temporarily impossible to provide air support to ground forces that have been engaged by
the enemy.

The objectives of a decision-support system, designed to assist human problem solvers
confronted with the complexities of military planning, can be broadly divided into three
categories (Figure 62). First, there is a compelling need to maximize the available human
resources. To achieve this the system must be capable of processing, ordering, and
appropriately filtering data into useful information. For this information to be
communicated effectively to the users of the system and allow system components (i.e.,
agents) to assist in the decision-making activity, the information must be represented in
the system in terms of objects. As discussed previously in Sections 3.2.2 and 5.2, a high
level internal representation of the information that the decision-support system is
processing is a prerequisite for embedding artificial intelligence components in the system.

Second, there is a need to maintain the unity of command. This can be accomplished
through sustained information visibility, near real-time and fail-proof communication, and
assistance in conflict detection. This assistance should be spontaneous and not dependent
on user initiation. In other words, the system must continuously monitor the problem
state to automatically detect actual and potential conflict conditions. Third, there is a need
to decentralize the decision-making activity. This reduces the potential for communication
bottlenecks and greatly increases the opportunities for parallel problem solving and the
exercise of individual initiative.

7.2  System Description and Architecture

The FEAT prototype was designed to integrate into the existing military command and
control systems environment as a knowledge-based decision support tool.  It utilizes
intelligent modules (agents) executing in parallel to determine the impact of decision
alternatives and detect potential conflicts during the mission planning process.  Remote
FEAT workstations are able to collaborate in the planning activity using TCP/IP Internet
protocol communication facilities. Principal FEAT capabilities include:
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♦ real-time linkage to remote FEAT workstations and information
sources;

♦ ability to send and receive messages;
♦ continuous analysis of planning state by multiple agents executing in

parallel;
♦ automatic conflict detection;
♦ ability of user to plan concurrently within shared and private worlds;
♦ continuous access to ‘Theater Backdrop’ information.

ICDM applications emphasize the use of agents, or modules of specific purpose and
viewpoint, working in a cooperative manner within and, when appropriate, across
separate computers. Furthermore, ICDM models cast the agents in an assisting or
supporting role to the human users of the system to effectively monitor user actions,
present information in meaningful ways, and provide advice. The agents on each
computer in an ICDM application react to information asserted to a common store
referred to as a data-blackboard.

In FEAT a mechanism for collaborative planning is implemented to interactively link
multiple users and data-blackboards, along with their agents. Users are able to work
concurrently in two different environments, the private world and the shared world and
send information from their terminal to another user’s shared world. The recipients can
then explore the reaction of the local FEAT agents to the new information, without
interfering with any information in their private world. The objects that exist in the
private and shared worlds are distinct. Further, the same agents operate in both worlds,
but the results of agent action in the private and shared worlds may not be the same as
though each world had its own set of independent agents.

The introduction of the private and shared worlds in FEAT makes it possible for the user
to compare the implications of alternative decisions. FEAT also provides a third
environment, the display world. Information that is placed into the display world is not
seen by FEAT agents. However, it is available to all FEAT report and display facilities.
Typically the display world is used to hold information that has come from a remote
source. In particular it may be necessary to hold values from a remote terminal in the
display world, because the action of the agents can create changes in the local objects
received from another terminal. For example, one user might wish to receive information
about a new activity, an exercise or operation, that has been planned at a remote terminal.
In addition to the selection of units, dates, and other primary values, the local user may
wish to see the cost data that was calculated at the remote terminal. This is easily
accomplished by sending the cost data from the remote terminal to the display world of
the local terminal. The primary data values are sent to the shared world of the local
terminal and will cause the calculation of cost data to be made by the local agents. Then
the local user can view the cost data calculated in the shared world by the local agents and
compare that data with the cost data in the local display world  (i.e., a copy of the
information that came from the remote terminal).
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The essential components of the system are shown in Figure 63 as a communication
facility (i.e., CMS), several agents, a noteboard, a user-interface (i.e., display), a report
module, and the shared, private and display worlds.
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Figure 63: Conceptual View of the FEAT Architecture

7.2.1  The Semantic Network

The semantic network is the vocabulary of items that is made available to all components
in the system. Of course any component may have its own local information and access
specific files or databases. However it is intended that any information that is needed by
any FEAT agent or report is included in the semantic network. The semantic network
objects are implemented in two forms. The first implementation is defined in C++ classes.
Considerable reliability and productivity leverage is provided through the use of the
RogueWave class library (Rogue Wave 1992), particularly for use in the creation of lists
of objects and operations such as sorting over those lists. All reports and interactions
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with the user are implemented with C++ objects. The second implementation of semantic
network objects is through COOL objects within the CLIPS expert system shell (NASA
1992). This implementation provides a corresponding object for inference and pattern
matching functions for each object in the C++ version of the semantic network
environment. In both the C++ and CLIPS worlds of objects, each conceptual semantic
network class is instantiated as three separate objects, one object for each of the private,
shared, and display environments. This permits the isolation and protection of the data
that belong to the different worlds.

The graphics user-interface (GUI) and communication activities deal directly and
efficiently with the C++ objects and the rule-based agents written in CLIPS  work
directly with their corresponding COOL objects. Any changes in the semantic network
within one object representation (i.e., C++ or COOL) is immediately transmitted to the
process that contains the corresponding object in the other form. Thus for each of the
three worlds, private, shared, and display, the C++ and CLIPS processes keep a one-to-
one correspondence between their respective versions of the objects.

Object-oriented programming permits the updating of objects in the two different UNIX
processes (i.e., C++ and CLIPS) to take place reliably by encoding the messages that
initiate the update actions in each process within the methods that are used to accomplish
the update within the other process. The advantage of object-level programming is
underscored by the reliability achieved in updating the corresponding C++ and COOL
objects. Every object in the semantic network is an instantiation of a class. The class is
defined as a single entity and therefore the method, or function, that is used to set an
attribute in every semantic network object instantiated from that class is the method that
is defined in the single class. When an attribute in either a C++ or COOL object is set or
modified, the communication of the update action to the other process is the method that
was defined in the class from which the object was instantiated. The class method for
performing the setting or modification of an attribute is the same method for every object
instance of the class. Once the class methods are properly written the correspondence
between the objects of the C++ and COOL worlds is guaranteed for all instantiations of
the class.

7.2.2  The Blackboard Component

The internal FEAT coordination facility consists of the agents, the data-blackboard they
use for communication, and the communication code used by the agents to correspond to
the C++ world. The data-blackboard is important in at least two respects. First, it
simplifies the lowest levels of communication. The user, as well as any of the rule-based
agents, can communicate individually with any of the other agents. But more typically
information is sent only to the one data-blackboard entity on a specific FEAT
workstation (i.e., CPU). The data-blackboard then exports the information to all agents
that have registered a request to import the information. Although requests to export and
import information can be made dynamically, it is sufficient for agents to simply register
requests for all objects of the types they handle when the agent code is loaded into the
system. This permits communication from a sender to be directed to the collection of
agents on any FEAT computer without having previous knowledge of the agents that are
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available. New agents can be added to the system without any changes in the components
that contribute (i.e., transmit) to the data-blackboard. Similarly, the agents can
communicate (i.e., collaborate) with each other by posting values to the data-blackboard.

Second, the continuous activation of the agents connected to the data-blackboard
eliminates all concern on the part of the user to identify what agent should be executing at
any point in time. The agents respond opportunistically to the changes in the data-
blackboard, activating rules as their conditions are met by the changes in the COOL
objects and CLIPS facts asserted to the data-blackboard.

The CLIPS version of the data-blackboard is implemented as a ‘Main’ module in a single
CLIPS process. This ‘Main’ module shares its objects and facts with the agent rule-bases
that are implemented as secondary modules within the same CLIPS process. CLIPS
permits the agent modules to import and export object values from the CLIPS ‘Main’
module that holds the data-blackboard. A major advantage of this implementation is that
on each computer the same physical COOL objects and CLIPS facts are used by every
module. For each world, private, shared, and display, only one copy of a semantic
network entity exits in the CLIPS process and that copy of the entity is addressed by
every agent that wishes to use it.

The CLIPS process provides facilities to manipulate a 'stack' of the modules that are to
receive CPU cycles. A 'focus' call is used to select the next module to execute rules from
its agenda, allowing a specific module or the module at the top of the stack to be chosen.
Since 'focus' can be called from the right hand side of rules as well as within user
functions, there is literally no limit to the control that can be exercised to select the
module that should execute. However, a simple round-robin algorithm works exceedingly
well in the prototype system. The private and shared world agents execute concurrently.
While it would be possible to prohibit the agents from executing in one or the other
worlds, there did not appear to be any advantage from the user’s point of view in
implementing this kind of control. It was considered more important that the user be free
to call up any reports and generally interact with any of the three worlds at any time.

7.2.3  The Agents

The FEAT prototype implementation employs agents written in the CLIPS expert
system shell language. Individual agents on a specific CPU are encoded within one CLIPS
process as distinct CLIPS modules. Modules provide independence of agent rule-sets,
while permitting the agents to share references to the same facts, templates, and objects.
Agent activity is displayed through icons, and visual cues are used to identify when an
agent is working, as well as when a warning or communication from the agent is available.
The current FEAT agents include the following domains:

Cost: A general cost agent.

Lift: An agent specific to air transportation reasoning.
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Time: An agent that primarily monitors relations between activities that
involve the time at which they are planned to take place.

Location: An agent that handles information specific to a location, for an
activity.

Availability: An agent that considers combinations of criteria associated with
availability.

Readiness: An agent that evaluates and checks the ‘readiness’ of units.

While it is recognized that in a final end-user system there would need to be more agents,
the six agents included in the FEAT prototype system are sufficient to demonstrate the
nature and potential capabilities of a multi-agent system in support of military planning
and execution applications.

        7.2.4  Communication Facilities

There are two areas of communication in FEAT. The first area is the communication that
takes place between the CLIPS and C++ processes. On a specific FEAT workstation (i.e.,
CPU) this communication ensures that the semantic network copies in the CLIPS and
C++ processes are in concert. The second area is the communication between and among
the CPUs. A set of communication procedures makes it possible to transmit and receive
COOL object information in equivalent C and C++ representations. This communication
is external to the CLIPS process and is a modification of the CMS message passing
system developed by the CADRC for previous implementations of ICDM (Pohl 1995,
Myers and Pohl 1994). This new version of CMS provides functions that can be called in
C, C++, or CLIPS to communicate object information to any agent or any group of agents
in the system. It also provides for the reception of messages and assimilation of messages
into the native environment of the receiving component. Essentially, it establishes a
common protocol for the transmission of formatted messages.

In addition, the communication component includes the code that handles the mechanisms
through which remote computers are involved in an active FEAT session. This includes
facilities to provide the dynamic connection to a session, the entering and leaving of a
remote communication group, transmission of remote data, transmission of noteboard
data, monitoring of active CPUs, and proper exiting of processes. In particular, the remote
object communication and noteboard facilities discussed later (see Sections 7.2.6 and
7.2.7) are implemented through CMS communication calls.

The object communication facility permits an object defined within one FEAT system
world to be communicated to selected worlds of remote FEAT systems. For example, an
activity object can be sent from the private environment of one system to the shared
environment of another. However, there is no particular limit to the number of objects or
characteristics relating to a single object that can be communicated. In other words, a
single attribute of an object or the attributes of several objects the entire semantic network
can be transmitted.
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7.2.5  The User-Interface and Report Facilities

The user-interface is implemented as a set of Motif widgets (Gregory 1992). It provides
dynamic windows that permit the user to ‘point and click’ to select the primary available
options (Figure 64). By ‘wrapping’ the widgets in C++ class definitions a library of
commonly used widgets is produced for the implementation of the user-interface.

Figure 64: Main Screen of the FEAT User Interface

Several table, graph, and chart display facilities are used to provide summaries of the
current problem state to the users. Graphic reports are provided by XRT widgets (KL
Group 1995) and include facilities for the generation of bar graphs, line graphs, tables, and
surfaces.
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7.2.6  The Remote Object Communication Facility

To facilitate a better understanding of the operation of the FEAT system, the actions
associated with a related set of remote communications of objects can be described as a
'textboard session’. A textboard session is initiated by any FEAT user when he or she
selects other FEAT users as textboard group members. The information that is sent in a
textboard session is referred to as the current textboard, or simply 'the textboard.'
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Figure 65: ‘Textboard’ Transmissions Among Multiple FEAT Workstations

The most common textboard session occurs when one FEAT user wishes to share the
plans for a new activity with another user.  In this case the sender transmits the activity
object and its associated unit objects, describing the units that are involved in the activity
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to the display environment of the receiving user. If the receiving user wishes to see how
the agents in the receiving system would react to the new activity, the primary values
from the activity and associated units are sent to the receiving unit's shared environment
as well. The primary values are those that agents use to generate inferred or dependent
values. When the primary values are received in the shared world the agents of the
receiving environment generate whatever may be inferred as dependent values. This
permits the receiving unit (i.e., FEAT workstation) to determine how its agents would
react to the proposed activity (Figure 65). The transmission of values to the display
world of the receiving unit permits the user to view the results obtained on the remote
system and compare those results with what is obtained in the receiver's shared world.

If all associated data and agents are identical on the sending and receiving systems, the
dependent values that result from the assertion of primary values will be identical. But
differences in local data and/or local agents might result in a different dependent value
being produced from that generated on the sending unit. While this difference might be due
to an error, it may also be the result of important proper differences among the data or
agents on the two units. It is important to note that this capability eliminates the need to
guarantee absolute agreement among the computers and in fact permits variations in data
and agents to exist on different units.

7.2.7  The Noteboard Facility

A noteboard, or message board, permits users at different stations in the network to
transmit text to groups and/or selected stations. In particular, the noteboard is used to
authorize the communication of textboard information and to transmit comments with
regard to the information received.  Specifically it might be used to reach agreement among
the human collaborators as to what values in a collaboration should be changed.

Icons at the right side of the main FEAT screen identify the active FEAT workstations
with which communication can be established (Figure 64). These icons are color coded.
Text displayed on the noteboard and most of the information received in a textboard
session is displayed in the same color as the icon of the sending unit. This makes it easy
for users to differentiate between noteboard message sent from a variety of FEAT
workstations.

7.3  Continued Work on FEAT4

The CADRC is currently extending the FEAT system to support the Sea Dragon
program of the US Marine Corps (Krulak 1996), under the direction of the
Commandant’s Warfighting Laboratory (CWL). This version, referred to as FEAT4,
focuses on decision-support for mission analysis, planning, and execution activities that
occur in the various sections of the Extended Combat Operations Center (ECOC).

Multiple FEAT4 workstations, distributed within the ECOC, are linked to the base
Marine Corps C4I (Command, Control, Communications, Computers, and Intelligence)
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system through a JMCIS server. Information entering the JMCIS Track Database
Manager (TDBM) from various sources (e.g., small hand-held Newton computers
operated by Marines in the battlefield) is transmitted in the form of objects to each
FEAT4 workstation. There, expert agents interacting with each other and the user
monitor changes in enemy and friendly forces positions, and assist in the development
and analysis of strategies and plans.

The FEAT4 system also incorporates an Object Command Language (OCL) that allows
users to conveniently enter OPLAN (Operations Plan) components into an object-based
knowledge base. By utilizing a simple ‘point and click’ user-interface operators are able to
translate textual OPLAN statements into object constructs. For example, the OPLAN
sentence “During Stage 2 the SPMAGTF will resist enemy aggression by attacking and
neutralizing enemy forces.” would be entered into FEAT4 by the user as a Commander’s
Intent object consisting of the following components:

Reference: ANNEX B
SECTION Situation
SUB-SECTION General

Element: SOURCE CJTF
EXECUTOR SPMAGTF
TARGET enemy
WHEN stage 2
ACTION attack
ACTION neutralize
OBJECTIVE resist aggression

Qualifier: DURING

This OPLAN knowledge base, together with several databases (e.g., weapons and
equipment, munitions, target types, friendly assets, etc.), serve as context for the agents
and the users as they analyze, plan and evaluate alternative courses of action.

Central to the FEAT4 architecture (Figure 66) are two components, the semantic network
and the agent kernel. The semantic network contains the current state of the problem in
object format (i.e., high level representation). Changes to the current state that are
received on a continuous basis from various sources (e.g., TDBM, users utilizing the
OCL) drive the agents as they respond to requests for services. The agent kernel
coordinates the discourse among the agents, and supports both direct (i.e., agent to agent)
and broadcast (i.e., one agent to all other agents) communications.

Apart from the JMCIS interface, the FEAT4 workstations are also connected to a
textboard-type Shared Net that adds a desirable level of redundancy to the communication
environment. Unfortunately, in the first version of the Sea Dragon C4I implementation
the Shared Net will lack internal object representation capabilities that are adequate for
agent inferencing purposes and will therefore serve mostly as a back-up message passing
facility.
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In subsequent versions it is proposed to add natural language processing capabilities that
would elevate the Shared Net to an information source, as compared to the data source
currently provided by the JMCIS TDBM.
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8.  CIAT: Facilities Management with Multiple Service-Agent Systems

In 1996, the Collaborative Agent Design Research Center (CADRC) working jointly with
CDM Technologies, Inc., undertook the development of a proof-of-concept
implementation of the ICDM model in the facilities management area. The objective of
the CIAT (Collaborative Infrastructure Assessment Tool) is to provide a decision-
support system that will allow NAVFAC, Fleets, CINCs (recently renamed Combatant
Commands) and Base Staff Civil Engineers to collaboratively recommend and assess the
impact and effectiveness, from a mission perspective, of investments of the US Navy's
multi-billion dollar facilities/installation budget.

8.1  Port Resources Scheduling as a Complex Problem

CIAT is an ICDM-based decision-support system that identifies conflicts and assists
human decision makers in complex problem situations that arise in infrastructure
assessment and utilization situations. The facilities management application shares many
characteristics that are common to complex problem situations, such as: information
overload; complex interrelationships; uncertainty; severe constraints; and multiple
decision-makers needing to collaboratively reach consensus (Figure 67).  
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Figure 67: The Complexity of Ship Berthing Figure 68: CIAT Decision Domains

US Naval Stations typically have a limited number of piers available to homeport US
Navy ships and regularly service foreign navies. Military pier and ship schedulers have a
difficult task. There are frequent last minute berthing service requests and at least an equal
number of unexpected equipment and facility failures. Once a commitment has been made
and a large ship (e.g., aircraft carrier or destroyer) is berthed at a particular pier, it is a
relatively expensive and time-consuming proposition to move that vessel to another pier.
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Schedulers are continuously confronted with uncoordinated maintenance conflicts. Ports
are relatively large installations involving many parties that play different roles and have
unaligned agendas. In this environment it is not uncommon for one group to schedule
activities that are in direct conflict with the proposed activities of one or more other
groups.
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Figure 69: Object Relationships of the CIAT Application

Currently with the availability of only limited, largely stand-alone computer facilities (see
Sections 2.3.1 and 2.3.2, and Figure 5), there is little collaboration among these groups
leading to frequent service conflicts and wasted resources. There is a need for an
integrated decision-support system that is designed to both provide assistance in the
analysis, evaluation and planning tasks that occur within a particular group and facilitate
the collaboration among several groups. In fact, the value of such a system is likely to be
most pronounced in its encouragement of consensus planning involving all of the major
players.
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8.2  System Description and Architecture

The architecture of CIAT is very similar to the FEAT system described in Section 7. It
therefore suffices in this section to address operational considerations, in particular the
functions of the various agents (Figure 68). CIAT is an object-based system that employs
expert system technology for analysis and evaluation. The representation of knowledge is
in objects and object relations that describe the real word entities (e.g., piers, cranes,
utilities, ordnance, etc.). Pier schedulers reason about these entities and how they relate to
one another. Figure 69 shows a relationship diagram of the object entities that are central
to the pier scheduling activity. The analysis of actual scheduling situations is performed
by a number of agents that look at the current state of the problem situation from their
individual perspectives and flag any violation of scheduling rules and guidelines. In the
proof-of-concept system emphasis has been placed on conflict identification. Future
work will extend these agent activities into collaborative conflict resolution, even though it
is our current philosophy in the CADRC to maximize user involvement in the final
resolution of conflicts.
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Figure 70: CIAT System Architecture Figure 71: CIAT Application Components

The system comprises four main parts: graphics; user-interface; agents; and, internal
communication facilities (Figure 70). The graphics component supports the processing
and manipulation of ship and pier drawings, as well as functions for modifying the
currently displayed drawing to correspond to problem states on past and future dates.
The drawing engine that is used in the current version of CIAT is AutoCAD (AutoDesk
1993), although the user does not have direct access to the AutoCAD drawing
environment. Instead, the user-interface seamlessly sends drawing instructions to the
AutoCAD process whenever the user initiates a drawing action. This is necessary because
AutoCAD does not have the facilities to manipulate the high level object representation
that is required within the CIAT application.
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The user-interface component provides all of the functions that the user utilizes to
manipulate the system. It is the part of the system that drives the logic of the agents
based on the actions of the user at any point in time.  The layout of the user-interface is
shown in Figure 72. The agents represent the logic base of CIAT. They incorporate
knowledge about the scheduling problem and analyze the current schedule proposal
according to this knowledge. The knowledge is represented in the form of rules that are
triggered by the existence or the non-existence of certain objects. All of the agents are
coded in the CLIPS expert system shell language (NASA 1992) and are modules of a
single CLIPS process. This process also includes an internal blackboard that coordinates
the activities of the agents and routes messages to the agents (Figure 70).

The communication system functions at two levels. At the first level, all of the internal
components of CIAT communicate using the CMS facility of the ICDM model (Myers
and Pohl 1994, Pohl 1995). Internal communication is required for exchanging information
about the status of the system for user-interface operations. CMS activity is transparent
to the user. In other words, all communication functions (i.e., create, update or remove
objects) are triggered automatically according to the appropriate situation. In addition, at
the first level, internal communication and coordination facilities provided by the ICDM
kernel allow agents to collaborate with each other and the user in a blackboard-like
environment.  However, all agent actions are driven opportunistically by changes in the
problem state without any form of scheduling or time-stamping. As discussed previously
in Section 4.1, the ICDM communication facilities incorporate preemption (i.e., interrupt)
mechanisms that are built on top of the Parallel Virtual Machine (PVM) inter-process
communications library (Beguelin et al.1991).

At the second level, multiple CIAT workstations communicate through TCP/IP protocol
networks allowing the transmission of solution proposals and plans, as well as text
messages from one CIAT workstation to another specific workstation or all other
workstations (Figure 71). On each CIAT workstation the user is able to plan in private
(i.e., local), operational (i.e., shared) and scheduled (i.e., accepted) worlds representing
those levels of planning. Agents representing critical areas of expertise, such as berthing,
facilities scheduling, infrastructure capabilities and maintenance, and construction issues,
continuously assist the users in identifying and resolving conflicts.  The agents are able to
differentiate between plans that are concurrently under preparation in the three different
planning worlds (i.e., private, operational, and scheduled) and assist uniquely within the
boundaries of each world.

8.2.1  The Agents

The agents consist of database knowledge and the rules for manipulating this knowledge
in respect to specific domains. The database contains primarily static information, such as
ship characteristics, pier facilities and capabilities, ship/pier history, and so on, which for
the purpose of the CIAT proof-of-concept system is stored in flat files. Future more
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extensive implementations of the CIAT application will likely require a more
sophisticated database management system. The agents that operate on database
information include:

Ship Schedule Agent:

Representation:  Ship objects; including ship description (class), geometric
(dimensions, draft), non-geometric (power needed, etc.) attributes, ship
berthing; including ship itinerary (arrival time, departure time, and duration
of stay) and a proposed berth.

Functionality:  A ship is assigned a berth for docking and services required
during its stay.  The berthing object includes the dates of arrival and
departure (duration of stay).  The agent registers its information and
communicates it to the Pier Scheduling agent.  In an assisted-scheduling
mode this agent will suggest a berthing based on the availability of berths,
triggering the other agents in the same way as the user-scheduling mode.

Pier Schedule Agent

Representation:  Pier objects; pier name and services offered.

Functionality:  A ship is assigned a berth on a pier. The berth is checked
against the current pier schedule.  If other ships occupy the same berth
during any day of the requested berth, a violation is flagged. In assisted-
scheduling mode the agent lists available piers (or berths), after consulting
the Ship/Pier History agent to determine whether the selection of the first
choice of berth could be influenced by the berth assigned to this ship for
its previous visit.

Construction and Maintenance Schedule Agent

Representation:  Pier objects; pier name.  Project objects; project name,
duration and location.

Functionality:  A pier assignment is received.  The agent interrogates the
construction/maintenance schedule for pier activity.  If the assigned pier is
scheduled for work during the specified period of time the agent indicates a
violation.

Pier Services Agent

Representation:  Pier objects; pier name and services offered.  

Functionality:  A request for services is received and matched against the
services available at the assigned pier (i.e., as determined by the pier
schedule agent).  If any of the services are not available (i.e., non-existent
or unavailable due to maintenance or otherwise) the agent indicates a
violation.
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Pier Capabilities Agent

Representation:  Pier objects; pier name and characteristics. Ship objects;
name and characteristics.

Functionality:  When a berthing object is received, the agent matches the
services needed with those available on the specified pier and flags a
violation if the pier does not offer one or more of the required services.  In
an assisted-scheduling mode this agent looks at the piers and lists those
that can offer the required services.

Pier/Ship History Agent

Representation:  Pier objects; pier name and services offered.  Ship objects;
name and characteristics.

Functionality:  When a ship is assigned a berth in either user-scheduling or
assisted-scheduling mode this agent checks the history file and reports its
findings (i.e., has the ship has ever been assigned there; was it assigned
there for a number of days; or, has it never been assigned to that berth but
to another berth on the same pier). In the assisted-scheduling mode, when
a ship request for berthing is received, the pier that serviced it last is
proposed first to again provide the required services.

The following additional agents are proposed for future extensions of the CIAT system:

Financial Analysis Agent

This agent will analyze the cost of assigning a ship to a specific berth (i.e., crane
services, extra power cables, transportation of crew members, utility costs, etc.).

Quality Control Agent

This agent will check the suggested berthings against rules and regulations of
operation and flag any inconsistency.  It will also check the validity of data, such
as berthing requests, by time-stamping all information coming into the system and
invalidating dated requests after a specified period of time.

Environmental Control Agent

This agent will examine the impact of ship berthings on environmental concerns
and regulations and present problems and potential issues to the user. It is
proposed that this agent would also keep a history file of environmental violations
and protests and attempt to match future facility activity patterns to previous
negative situations.

8.2.2  The User Interface

The major components of the user-interface are shown in Figure 72. In the center of  the
main CIAT screen is a scaled drawing of the pier configuration (i.e., NAVSTA San Diego,
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CA) which serves as the demonstration scenario for the proof-of-concept system.  As the
hour and the day change, the user can view the corresponding changes in ship placement
at individual berths.  The individual ships are represented as scaled, plan-view outlines
appropriate to each class with ship names within each outline.  

On the left side of the screen are status icons for the various agents. Whenever an agent is
active a yellow border will appear around the corresponding icon. In the current system
icons are included for the following agents: Ship Schedule agent - to monitor the needs of
ship arrival and departures; Pier Schedule agent - to monitor the availability of berths;
Construction and Maintenance Schedule agent - to coordinate the construction and
maintenance activities with the ship and berth schedules; Pier Services agent - to
coordinate the availability of services with ship and berth schedules; Pier Capabilities
agent - to coordinate the pier capabilities with ship needs; and, Pier and Ship History
agent - to propose ship placement based on historical activities.

Figure 72: CIAT User Interface Layout

At the upper right side of the screen are a number of utility functions including:  the
currently displayed day and time; the options to change the day and time; and, display
options to zoom to a single pier, zoom to the entire set of piers or refresh the screen. On
the lower right side of the screen is a list of typical port decision-makers (i.e., groups)
that might be simultaneously connected in a collaborative problem solving session.  When
a particular member or group is connected the boxes including that name are highlighted.  
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At the top of the screen from left to right are the following principal CIAT options:  
Plan - to initiate a new, or use an existing planning session; Update - to update data files
for pier construction and maintenance, pier and port services, and ship arrival and
departure times; Schedule - to assign and un-assign a ship to a particular berth, including
both user-scheduling and assisted-scheduling modes; Reports - to generate a number of
reports including the schedule of ships, schedule of berths and piers, schedule of pier
maintenance and repair, and schedule of intermediate maintenance availability servicing;
Tools - for textual notes on the pier/ship drawing, tidal calculations, display of detailed
pier drawings, and display of detailed ships drawings; View - to work with multiple views
of the ships/berthing schedule; Send - option to send textual messages and the operational
view to one or more decision-makers; and, Quit – to terminate use of the system.

All CIAT users have an accepted scheduled view, which represents the view that has
official approval. It is expected that individual users or groups will investigate options for
future alternatives using the operational view.  This will involve all of the data from the
scheduled view with proposed changes.  Individual users also have the option of
investigating berth assignments using a private view which may or may not become an
operational view. Utilizing the view concept, a user or a group of users have the ability to
investigate multiple future options without changing the accepted or scheduled view. At
some point a decision-maker in authority must exercise his or her authority to move an
operational view into an approved scheduled view. On the screen, immediately below
these CIAT options is a banner identifying the current port plan, the current port of
concern, and the current view (i.e., private, operational or scheduled).
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9.  KOALA: Architectural Space Planning with Object-Agents

Design is indeed an ubiquitous activity. In the physical world every artifact, whether it be
a coffee maker, a miniature silicon sensor for invasive blood pressure monitoring, a ship,
an automobile, or a building, is the result of some kind of design activity. However, design
is concerned not only with the creation of artifacts. Any problem solving situation in
which there exists an element of the unknown, such as lack of information or incomplete
knowledge of the relationships among variables, involves an intellectual effort that can be
categorized as design.

It follows that design is more than the rote calculation of an algorithm or the copying of a
known process, although either or both of these may be useful design tools. For an
intellectual endeavor to qualify as a design activity it must involve relationships that
cannot be totally defined and appear to pose some degree of conflict. Indeed, the
resolution of actual, perceived and potential conflicts is a fundamental ingredient of all
design endeavors.

9.1  The Complex Nature of Design

Typically, design requires decisions to be made among several imperfect alternatives. It is
in the nature of those decisions that designers will often find the need to supplement
logical reasoning with intuitive feelings about the problem situation that can lead to
creative solutions and new knowledge. As a rule such new knowledge cannot be logically
deduced from the existing available knowledge and is validated only after the solution has
been discovered and tested. In this respect design is not unlike the decision-making
activities that occur in a wide range of complex problem situations that have to be dealt
with in many professional fields such as military planning, management, economics, law,
medicine, and transportation.

The quality of design solutions will vary significantly as a function of the human and
information resources that can be brought to bear on the solution process. Designers often
make errors in judgment during the earliest de sign stages that require costly and time-
consuming corrections down stream (Figure73). Unfortunately, these later corrections can
lead to other compounding errors if the original intent of the designer is not known.

The principal causes of design errors are lack of experience and knowledge of the designer,
and inadequate integration and coordination of the various parties that are involved in the
design to product cycle. It is therefore not surprising that a great deal of interest and
research activity has been focused in recent years on supporting the design activity in a
computer-assisted environment. However, the effective realization of this objective has
proven to be a much more difficult and elusive undertaking than first anticipated. The
reasons are related not only to the ill-defined nature of the activity (Rittel and Webber
1984, Simon 1984), but also to the inadequacies of the representational and operational
models that have been used as the framework for computerization. At the core of these
inadequacies have been the issues related to the representation of knowledge within the
computer and the interface between the human designer and the computer-based
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assistance components. These issues have been discussed throughout this Technical
Report (see in particular Sections 1.4.5 and 3.2.2 for representation issues, and Sections
1.4.1, 1.4.9 and 3.2.6 for computer-user interface issues) and therefore will not be
reiterated in this Section.

LACK OF EXPERIENCE AND 
KNOWLEDGE OF DESIGNER

ERROR CORRECTION 
DOWNSTREAM LOSES THE 
INTENT OF DESIGNER

LOSS OF TIME DUE TO LACK OF 
INTEGRATION AND 
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Figure 73: Typical Failures in Design Figure 74: Schon’s Design Tensions

Although reasoning is an essential functional component of the design activity, it would
be misleading to suggest that design is performed in an entirely methodical manner as a set
of sequential transformations. Schon (1988) has drawn attention to four fundamental
tensions in design (Figure 74).  First, designers typically have difficulty articulating the
knowledge and methods that they apply to the design activity. While the design solutions
that they produce are often ingenious, the subsequent explanations of the designer are less
convincing. If the knowledge the designer holds cannot be made explicit then what kind of
knowledge is it, how is it retained, and how can it be accessed when needed?

Second, there is the apparent paradox between the designer's quest for a unique solution
and the requirement of general rules to reason out that solution.  Third, designers
accumulate knowledge from one project to the next. If they apply this prototype
knowledge derived from past projects to produce design solutions, how can they ever
generate new prototypes?  Fourth, architecture and engineering design is a team effort.
The team members have pluralistic backgrounds, interests, and agendas. Yet, they
normally agree on a common design solution.

While designers will employ sequential reasoning in short bursts and over somewhat
longer periods to explore and evaluate solution alternatives, the generation of the
alternatives themselves is often neither sequential nor logical. The latter is characterized
by the spontaneous introduction of apparently unrelated thoughts, associations that
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transcend purely logical relationships, whimsy, and tacit understandings that defy
explanation. In other words, intuition appears to play a major role in most design
endeavors.

9.2  Agent Types and Interactions in KOALA

The KOALA (Knowledge-Based Object-Agent Collaboration) system extends the
service-agent implementations discussed in Section 6 (ICODES), Section 7 (FEAT) and
Section 8 (CIAT), by introducing two additional agent types: object-agents that represent
high level data objects such as the spaces in a building; and, monitor-agents that act as
facilitators during interactions.

Service-agents have expert knowledge in narrowly defined fields and typically provide
advisory services based on their knowledge. In military mission planning, as exemplified
by the FEAT prototype system (see Section 7), such knowledge domains include: cost;
time; transportation; readiness; location; and, availability. For example, in the FEAT
decision-support environment the Lift agent services requests for determining the
availability and suitability of aircraft for transporting troops to the theater.

In KOALA, Space agents are a specific instantiation of a more general type of agent that
can represent the interests of a high level object that plays a significant role in the
decision-making process of the application environment. In the building design
application, spaces or rooms play an important role in the development of floor plans.
The architect manipulates spaces as complex data objects with strong relationships to
each other and equally important relationships to data entities that are related but
substantially different in nature (e.g., occupant activities, privacy, security, etc.). The
ability of the human designer to reason about the relationships among complex data
objects is an essential part of the decision-making process that underlies the design
activity.

In multi-agent systems such as  FEAT a semantic modeling approach (Myers et al.1993)
is employed to define a common vocabulary that serves as an internal high level
representation of real world objects, such as Marine Corps units, theater locations, and
aircraft. This approach provides a workable basis for service-agents to monitor the
evolving solution plan and communicate with each other and the human decision-makers
through an internal collaboration facility. However, the relationships among data entities
are represented only to the extent that the service-agents view the solution state from
their respective knowledge domains with special conflict identification agents attempting
to reconcile these, often conflicting, views. Therefore, the success of this approach must
rely heavily on predefined knowledge that is embedded in the agents, and user interaction
(i.e., the intervention of the users to maintain and prioritize relationships as a reflection of
their intent).

A different approach is to treat the objects that play a major role in the problem
environment (e.g., building design), not as passive data entities, but as active agents. Such
object-agents can utilize communication capabilities to dynamically create and maintain



CADRC, Cal Poly, San Luis Obispo, CA 93407:  Technical Report CADRU-11-97 (Jan.’97; 3rd Printing Apr’03)

128

relationships to other object-agents. Potentially, this would appear to be a significantly
more promising approach. Such an environment allows a complex problem system to be
decomposed into sub-problems without diluting or losing relationships. To the contrary,
relationships are greatly strengthened through the dynamic nature of communication in a
collaborative environment. Space agents then are object-agents that have knowledge of
their own nature (i.e., essentially the same descriptions that are contained in a space data-
object) and the ability to interact with other agents through their communication
capabilities. Utilizing this knowledge as a basis for developing their interests and desires,
Space agents attempt to satisfy such concerns by acting on their knowledge, gaining
additional information, and requesting services from other agents. In this highly
collaborative environment there is a need for facilitators to detect conflicts and moderate
arguments among object-agents. This role is assumed by Monitor agents. In summary,
KOALA supports an agent taxonomy that includes service-agents and object-agents, as
follows:

Designer Agent:  KOALA recognizes the human designer (i.e., the user) as the most
intelligent agent in the computer-based design environment. Capable of a wide variety of
cognitive skills ranging from in-depth analysis to highly abstract conceptualization, the
human designer essentially orchestrates the evolving design solution. Unique to this agent
is the notion of intent. KOALA represents such notions with the provision of a Designer
agent.  It is the responsibility of this agent to not only acquire the designer’s intent, but to
also maintain its reflection in the decisions being made by the agents in the system. Intent
may be explicitly expressed in the form of design criteria, such as performance
requirements, or implicitly hidden in decisions that are influenced by vaguely defined
perceptions and subtle nuances. In the design activity, the notion of intent is essentially
embedded in the strategy employed by the designer.

Service-Agents:  KOALA includes several service-agents that represent expertise within
specific knowledge domains. Each agent provides expert evaluations and consultation
based on its particular area of aptitude. This analysis is largely driven by prototypical
knowledge. Based on such knowledge, an educated comparison can be made between the
various attributes and characteristics comprising the current solution and those commonly
associated with design elements of a similar nature in a related environment. The exact set
and depth of domains represented depends on the context in which the application is to
be employed. In KOALA, service-agents offer other agents, including the user, a domain
specific pool of expertise capable of providing supporting design solutions given a certain
set of conditions. Once invoked, these domain agents may employ the services of other
agents (including the user) to perform the requested analysis.

Space Agent:  A building space can be defined as a physical volume bounded by one or
more physical surfaces or implied boundaries.  Further, a space is governed by a set of
constraints and guidelines, which can be made available through prototypical information.
In KOALA such prototype knowledge forms the basis for agent evaluation, and is used
by a Space agent to establish a set of interests and desires relating to a particular space.
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With the addition (by the user) of any space into the evolving design solution a Space
agent is created and associated with that particular space. The sole purpose of a Space
agent is to represent the interests of its space counterpart (i.e., acting as a mentor for that
space). Consequentially, each Space agent views the world (i.e., the solution space) from
its own, potentially biased perspective. However, such biases are an important ingredient
of a truly autonomous environment. As in human group collaborations these biases reflect
the variety of viewpoints that can apply in a given context, and must therefore not be
suppressed in the computer-assisted environment. Extensively analyzed, argued, and
negotiated, differing viewpoints lead to a more comprehensive understanding of the
problem and presumably a higher quality solution.

Monitor Agent:  The presence of object-agents in a computer-based decision-support
system will greatly increase the number of possible and likely collaborative interactions.
In fact, non-convergence (i.e., the inability of the agents to come to a consensus) is a real
possibility. In the FEAT, ICODES and CIAT applications this potential problem could
be controlled through various techniques, such as user interaction and the assignment of
priorities (Pohl et al.1989). In the KOALA system the problem of non-convergence is
much more serious, not only because of the relatively large number of object-agents but
also because of the different viewpoints that these agents represent. For this reason the
concept of Monitor agents has been introduced in the KOALA system. Essentially acting
as facilitators, it is the task of Monitor agents to identify possible conflicts and assist in
their resolution. They perform this responsibility through the application of moderating
techniques that have been successful in human collaborations (Smith 1994, Cawsey
1992).

9.2.1  Agent Communication

To assist in the realization of desired outcomes and interests, each agent in KOALA is
provided with the ability to communicate with other agents. Fundamental to collaborative
decision-support, this communication is primarily used as a vehicle whereby agents
attempt to satisfy their constraints and promote their interests. Theoretically, these
agents would not necessarily be restricted to the local system environment. An agent has
the potential of collaborating with any other agent located on a connected system. This is
true provided both share a common language, or vocabulary. A language in this sense can
be defined as a collection of syntax together with a set of associated semantics. Together,
these components allow for the communication of concepts, ideas, and desires.

For example, let us assume that an agent requires a certain resource that is not readily
available within the local environment. The agent may choose to broadcast a request for
assistance on an open communication channel. Any agent capable of providing such a
resource, or knowing another agent that does, may send a response back to the requesting
agent. One or more of these agents may then be contacted by the initial agent in an effort
to obtain the resource. It should be noted that all of this activity may take place
transparent to the user’s knowledge. The agent effectively is able to take the initiative, on
the assumption that the requesting agent and the agent providing the resource share a
common vocabulary. However, as in real life this is not always the case. In future more
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mature versions of the KOALA system new languages could actually be learned by the
agents. Similar to the technique employed by an infant, a basic understanding of a
language could be acquired through observation (Burger 1993). An agent could monitor
conversations engaged in by the target agent. Through observation, the agent would
attempt to associate perceived semantics with the spoken syntax. Once a fundamental
understanding of the language has been obtained, the agent could potentially enter into a
collaborative dialog within the new arena.

9.2.2  Agent Collaboration

When a design action occurs in KOALA, each affected Space agent formulates a
supporting set of design decisions based on individual constraints and interests. These
decisions may include, for example, a new building material or structural system, and are
presented to the other agents with the intent of achieving global acceptance. As a result,
each agent gains exposure to various alternative solutions.  However, due to their
autonomous nature, Space agents will tend to lobby only for outcomes that best satisfy
their particular interests. In other words, if left to their own devices, Space agents are
reluctant to accept anything that offers a less than perfect outcome as determined from
their perspective.

Upon receiving an alternative suggestion, an agent performs an analysis to determine the
impact on itself of accepting such a design decision. This process may include numerous
consultations with various service-agents pertaining to any domain specific analysis.
Based on the result, the suggestion is then prioritized into a list of alternative solutions
kept by each agent. The prioritization is grounded on how favorable the resulting outcome
is for that particular agent. In other words, how close is the outcome to providing total
(i.e., 100%) satisfaction? If the calculated percentage is high enough, the agent may accept
the suggestion and proceed to add it to its set of acceptable solutions. Otherwise, the
agent may choose to modify the suggestion to yield a more acceptable outcome for itself
and present it to the other agents as an alternative solution. In either case, the receiving
agent indicates its degree of acceptance of the proposed solution to the other agents. If at
any time during the course of this deliberation the intersection of each agent’s set of
acceptable solutions yields a non-empty set, global consensus has been achieved.
Otherwise, collaboration will continue in this manner until such a state is reached or a
third party mediator intervenes.

9.2.3 Moderating Techniques and Strategies

As implied by their name, Monitor agents spend much of their time monitoring the
interactions among Space agents.  During the course of listening in on agent conversations,
Monitor agents look for behavior that suggests real or potential conflict, and attempt to
provide a resolution. This is a difficult undertaking requiring a great deal of research
beyond the scope of the current implementation of KOALA. However, some relatively
simple conflict detection and resolution strategies are being implemented in KOALA to
demonstrate the feasibility of the Monitor agent concept. Three such strategies, namely
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the persuasive strategy, the imposive strategy, and the user-directed strategy, are briefly
described below.

Persuasive Strategy:  As the name implies, this conflict resolution strategy attempts to
use persuasion as a means of achieving global consensus. In essence, the Monitor agent
attempts to persuade one or more agents to reevaluate previously unacceptable solutions
based on a more flexible heuristic. The disadvantage of this approach is the additional
expense accrued by requiring an extensive reevaluation of each proposed solution. A less
costly approach would be to simply have each agent lower its minimum level of
acceptability thus permitting more solutions to fall into an acceptable range. However,
such a superficial approach would result in poorly thought out and potentially inadequate
solutions and is therefore unacceptable.

As reevaluation proceeds, an agent may accept a previously unacceptable solution. In this
case, the agent communicates the new decision to the Monitor agent along with an
indication of its desirability. This desirability is based on the degree of loss the agent
would be required to endure by accepting such a solution. Upon receiving an agent’s
decision regarding a reevaluated solution, the Monitor agent places the response along
with a description of the particular solution into a list. Once the reevaluation task has
been completed, the Monitor agent reviews this list searching for commonality. If a
common solution is found, the Monitor agent indicates the selected solution to the agents.
If the agents have found common agreement with multiple solutions, the Monitor agent
uses the associated desirability as the decisive factor in determining which solution results
in the least amount of penalty to the agent. However, at any time an agent may lodge a
formal protest as an appeal against the consensus agreement.

Imposive Strategy:  Employing a more forceful approach, imposive conflict resolution
again attempts to bring about a global consensus through compromise. With this
approach, the Monitor agent attempts to impose a solution onto the agents considering
that persuasion proved to be ineffective.  However, the imposed solution is by no means
arbitrary. Rather, the solution is not only a product of agent collaboration, but it may
actually be held favorably by a number of agents. In determining which solution to select,
the mediating Monitor agent searches for a majority opinion.  For example, suppose that
three out of nine agents find acceptability with a certain solution ‘A’.  Further, suppose
that of the remaining six agents no more than two agree on any one solution. Therefore,
solution ‘A’ would attain a majority status. In this case, the Monitor agent would
strongly consider imposing solution ‘A’ on all nine agents depending on the degrees of
loss. Again, any agent displeased with the decision would be free to express its
dissatisfaction via a formal protest.

While being somewhat dictatorial in nature, imposive conflict resolution does attempt to
provide a solution that is desirable to the majority of agents. Even so, imposive conflict
resolution is not without its limitations. There are circumstances under which this conflict
resolution strategy cannot be successfully applied. Since the imposive strategy relies on
the existence of a majority solution, it is certainly possible that none of the agents find
another agent’s solution acceptable. In this case there would be no majority solution for
the Monitor agent to impose. Rather than have the Monitor agent arbitrarily select a
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solution from among the agent suggestions, the Monitor agent is designed to employ a
third strategy to resolve the conflict.

User-Directed Strategy:  If both the persuasive and the imposive conflict resolution
strategies have been unsuccessful in resolving the conflict, a more drastic approach is
employed by the Monitor agent. As the name implies, user-directed conflict resolution
involves the human designer as the definitive mediator. The Monitor agent initiates a
dialog with the human designer presenting the particular dilemma at hand. In doing so, the
Monitor agent provides the user with a description of the various solutions as presented
by the deliberating agents. Such descriptions include the proposed solution, the agent that
is presenting the solution, an indication of the major consequences of adopting that
solution, and its overall desirability among the other agents. Based on this information, it
is the task of the designer to decide on the most appropriate solution. However, the user
is by no means confined to the solutions proposed by the agents, but is free to explore
any number of alternative solutions or even postpone the decision to a later date. In the
case of postponement the design continues despite the outstanding conflict.

Within such a collaboration intensive environment, outstanding conflicts may finally
resolve themselves through future deliberation whether it involves the human designer or
not. In any case, to assist in formulating a decision, the designer may choose to involve a
number of agents in a hypothetical discussion of various alternatives. Similar to a Space
agent engaging the assistance of a Structural domain agent to determine an appropriate
structural system, the human designer may explore various consequences and alternatives
via agent collaboration.

9.2.4  Formal Agent Protests

As part of its basic functionality, each Space agent has the ability to post formal protests
or indicate domain violations. As with collaboration, agent protest is yet another method
an agent can use to express its interests. This is particularly useful when an agent has
been coerced by a Monitor agent into agreeing with a particular design decision. As a
result, the agent may be dissatisfied with the outcome and now has the opportunity to
express itself accordingly. This is accomplished via a formal protest procedure. An agent
indicates its dissatisfaction by highlighting the border of its associated space in red. At
any point during the design, the user may obtain a protest report by selecting the space.
This report describes in detail the nature of the protest in addition to recommendations
for its resolution.

Based on these recommendations, the user may choose to enter into a collaborative dialog
with a collection of agents to pursue another course of action. Alternatively, the user may
simply wish to view the agent’s grievances making no attempt to resolve them at that
particular time. Agent protest reports may be reviewed by the user at any time during the
design activity. In any case, these grievances may resolve themselves through future
collaboration or continue throughout the design activity. The fact that an agent is
temporarily dissatisfied with the current solution does not prohibit the designer from
progressing with a solution.
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An extension to the method of agent protest described above would be to integrate a more
entrepreneurial element into the notion of an agent.  In other words, allow a discontent
agent to attempt to perform some degree of retroactive negotiation with other agents in an
effort to have the initial decision reevaluated in its favor. An agent may even bargain with
other agents compromising its position on one issue in an effort to gain favor with
another.  However, it is not difficult to imagine the ramifications of allowing agents to
essentially build alliances with other agents. This would clearly threaten to introduce a
degree of bias into the decision-support environment that could very well result in a
redefinition of agent interests and motivations.

9.3  System Description and Architecture

Like FEAT, ICODES and CIAT, KOALA is also an implementation of the ICDM
development framework. Its principal components include a semantic network, a
Graphical User Interface (GUI) world, and an agent world (Figure 75).

GUI Manager
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Semantic Network

GUI WORLD

AGENT WORLD

Agent
Semantic Network

Access
Agent

Climate
Agent

Space
Agent

Designer
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Monitor
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Agent

Lighting
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Figure 75: KOALA System Architecture
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9.3.1  The Semantic Network

The semantic network exists as a structured collection of informational components that
describe the design problem and the current solution at a given point in time. KOALA
incorporates an object-oriented semantic network design (Papurt 1995) in which related
attributes and functionality are encapsulated into object classes. In an object-oriented
semantic network, knowledge components and their relationships are represented as
objects. Applications can be broken down into a series of object classes according to
attributes, functionality, and relationships to other objects. Class objects can be created
and manipulated through function calls described by the class. In an abstract sense, these
function calls can be thought of as messages that are sent to an object instructing it to take
some kind of action.

The object-based semantic network employed in KOALA is divided into two
components. The first component contains information relating to the GUI portion of the
system describing the graphical attributes of the solution space including site boundaries
and actual space objects. This information is used primarily to address the graphical
aspects of the design environment. The second component of the semantic network
relates to the logical aspects of the system. This includes design specifications, individual
space characteristics, and the relationships describing their interactions. For efficiency,
the majority of the semantic network is distributed across the Designer, Service and
Space agents.

The Designer agent contains semantic network objects describing the overall intent and
objectives of the human designer. Service-agents contain the domain specific components
of the semantic network. Space agents contain space dependent information.

For example, the Daylight agent has knowledge of the methods available for predicting
the internal lighting characteristics of a space under given external daylight conditions. The
Space agent, on the other hand, has knowledge of its desired daylight environment.
Despite this distribution, the semantic network remains a self-managing entity. Utilizing
an object-oriented model, information can be obtained or manipulated by any agent via the
appropriate functional interface.

9.3.2  The GUI Manager

The GUI manager is responsible for the management of the graphical interface of the
system. This encompasses menus allowing the user to initiate various actions, dialog
boxes, which are used to present information to the user, and the graphical portion of the
semantic network. Implemented in the C++ language (Stroustrup 1987), the components
are formally defined in object classes. For example, a dialog box used by Space agents to
express discontent with a particular design decision can be fully described and managed in
a single object class. This is due to the fact that at the user-interface level all protest
reports provide similar functionality and structure. Therefore, these characteristics can be
encapsulated into a single Protest Report GUI object class. As a result, the GUI manager
comprises a set of such self-contained, self-managing object classes.
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To perform actual user-interface manipulations, the GUI manager employs a lower level
library of tools (i.e., UIToolBox) developed in the CADRC as an object-oriented front-
end to the Motif and X-Window user-interface and event management programming
environment (Young 1990).

9.3.3 The Agent Manager

The task of the Agent manager is to manage the entire taxonomy of agents described in
Section 9.2.  To facilitate this task, all agents reside in a single environment referred to as
the agent world. Apart from its agent inhabitants, this world also contains the logical
component of the semantic network. Taking advantage of its opportunistic nature, the
agent world is implemented in the CLIPS-COOL language (NASA 1992). Providing an
object-oriented approach to rule-based paradigms, COOL allows for object functionality
to exist at both a procedural (e.g., message-handler or function call) and an opportunistic
(e.g., rule firing) level. Further, COOL supports the division of applications into separate
replicated environments known as modules. Each module contains its own knowledge and
event management environment.

Using such a facility, applications can essentially encapsulate related knowledge and
functionality into separate, self-contained modules. Information is passed between
modules via an import/export mechanism. Scheduling of modules is performed by the
Distributor coordination facility developed in the CADRC. Employing a “round-robin”
approach, the Distributor provides each module the potential of executing its rules. Once
scheduled, a module fires rules until a predetermined rule limit is reached or its agenda has
been exhausted. In either case, the Distributor then passes control to the next module in
the queue. This pattern repeats itself until there are no more rules to fire, at which time
the agent world rests waiting for the next activity to occur. Taking advantage of this
functionality, agents of a more static nature can be defined and implemented as modules.
More dynamic agents, however, are implemented with greater efficiency as COOL
objects.  

Designer Agent:  Due to its static nature the Designer agent is best implemented as a
single CLIPS module. Having access to the interface-generating services of the GUI
manager, the Designer agent may communicate with the human designer at any time
during the evolving design. Such interaction may include verifying internal assumptions or
even requesting additional insight into user intent and objectives. Being in continuous
communication with both the user and the other agents, the Designer agent is essentially
responsible for keeping the agents focused on the intent and objectives of the human
designer.

Service-Agents:  Also static in nature, service-agents are best described as CLIPS
modules. Each service-agent resides in its own module. These modules comprise domain
specific rules that are driven by requests from other agents. To employ the services of a
service-agent the requesting agent creates a request object, which describes the nature of
the desired service. Once the request has been broadcast by the requester, the appropriate
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service-agent(s) take action. Processing of a request may require additional information to
be obtained from other semantic network objects. Further, servicing of a request may
require the employment of additional agents. Once processing has begun, service-agents
are capable of obtaining or employing any resources or services they require to satisfy the
request, without the assistance of the requester.

In the initial version of KOALA, a group of six architectural domains was selected. These
domains are represented by Access, Climate, Sound, Daylight, Structure, and Cost
agents.

Space Agents:  More dynamic in nature, Space agents are defined as COOL objects.
Similar to the Space class, the basic attributes and functionality of an agent are described
in an Agent base-class (Papurt 1995). Utilizing their definitions as a basis, the Space agent
class is derived by inheriting the characteristics of both the Space and Agent base-classes.
Additional characteristics describing specific interests and desires are then added to
complete the definition. A Space agent object is instantiated with the addition of each
new space into the progressing design. Once instantiated, the Space agent is free to
interact with the other agents as desired. If a space is removed from the current state of
the design solution, its associated Space agent is automatically destroyed.

Monitor Agents:  Similar to Space agents, Monitor agents are dynamic in nature. As the
number of spaces increases, so may the amount of agent collaboration. This increased
collaboration may take place as several separate conversations occurring in parallel. To
monitor these conversations additional Monitor agents may be required. With this in
mind, Monitor agents are defined as COOL objects. Like the Space agent class, the
Monitor agent class inherits its fundamental attributes and functionality from the Agent
base-class. As the amount of agent collaboration fluctuates, so does the Monitor agent
population.

9.3.4  The Agent Status Display Manager

The Agent Status Display (ASD) manager is an extension of the GUI manager. Like the
GUI manager, the ASD manager employs the services of the UIToolBox library to
generate its graphical user-interface components. In essence, the ASD manager provides a
general user-interface for the agent population within the system. Each type of agent is
represented as an active icon within a status menu. Service-agents have their own
individual entries in this menu. However, due to their dynamic nature both the Space
agent and Monitor agent populations are represented by a single pair of icon buttons.

The purpose of this active icon menu is twofold. Agents can indicate their current status
through manipulating a color-coded border surrounding their icon button. For example,
agent collaboration is illustrated by each agent turning its icon border yellow when it is in
an active state. In the case of more dynamic agents such as Space agents, agent status is
indicated more specifically through direct manipulation of the agent’s GUI. For example,
a Space agent can indicate its dissatisfaction with a particular design decision by turning
the border of its graphical space representation red in addition to the border color change
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of the Space agent’s icon in the ASD menu. Whether in a general or specific form, the icon
menu provided by the ASD manager is useful in providing agent expression in a graphical
manner.

The second function of the ASD manager is to provide a general entry point for the user
to address individual service-agents. This need may arise during the formation of a
hypothetical consultation committee. The user may click on an agent’s icon button as a
means of directly addressing that agent or agent population. Once such an activity has
been detected, the ASD manager conveys this information to the Agent manager, which in
turn notifies the appropriate agent(s). Once notified, the agent interacts with the user
employing the services of the GUI manager to construct an appropriate user-interface.

9.4   Interactions During a KOALA Session

A detailed description of the typical discourse between user and agents during a KOALA
design session can be found elsewhere (Pohl 1996). This description, which is too long to
include here, clearly demonstrates the parallel nature, potential for local decision-making,
and decentralized communication in a decision-support system that includes object-
agents. It suffices here to present a short excerpt.

For the purpose of this brief demonstration scenario excerpt it should be assumed that
KOALA has been initialized with several categories of information, such as general
project information, building type prototype information, and project specific criteria.
Each of these categories is based on some general specifications for space type and
occupant activity characteristics.  The demonstration scenario focuses on the design of
the ‘Shoreline Community Center’ in Pismo Beach, California. Data pertaining to
bounding traffic ways, noise sources, climate, construction costs, prototypical building
type information, and site information can be freely accessed by any member of
KOALA’s agent population.

To emphasize the relationship between agent collaboration and the kind of collaboration
that occurs in human society, Pohl (1996) presents the entire demonstration scenario as a
theatrical play. The setting is a site located in Pismo Beach and its surrounding
characteristics. The playbill includes a list of character roles that are performed by the
various agents in conjunction with the human designer. In keeping with this theatrical
theme, interaction among the performers is presented in dialog form. Although KOALA
agents have no emotional capabilities, given the theatrical nature of this example, agent
dialog is presented in an animated and colorful manner.

Based on the information gathered from the prototype databases, KOALA presents the
user with a set of spaces typical to a community center, such as ‘lobby’, ‘reception’,
‘office’, ‘conference room’, ‘library’, etc. (Figure 76). These space templates already
contain a rich collection of prototypical characteristics and qualities such as area, desired
orientation, and desired adjacency. The designer may select, or instantiate, any number of
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these space types or may choose to define a new one. The following excerpt from Pohl
(1996) focuses on the behavior of an assembly space (i.e., a ‘lobby’) after it has been
selected by the user to become part of the evolving building design solution.

Figure 76: Main KOALA User Interface Screen
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USER :   Instantiates and places a new ‘assembly’ space with the following
characteristics:

(Note that many of these characteristics are initialized with prototypical
values. However, the user is free to redefine these values as desired.)

Space Type: assembly Name: LOBBY
Area (Sq. Ft.): 270 # of Occupants: 10
Ceiling Height (Ft.): 8 Dimensions (Ft.): 15 x 18

Adjacencies: Necessary                       Desirable           Optional                       Undesirable
library conference manager staffroom
corridor parking office storeroom
reception barbecue area utility area
restroom playground
waiting
bldg. entrance
site access

Activities: Code for when activities occur (D = Day Only; N = Night Only; A = Day and Night)
Necessary                       Desirable           Optional                       Undesirable
reading(A) conversing(A) conferencing(A) drinking(A)
telephoning(A) listening(A) interviewing(D) eating(A)
viewing(A) resting(A) storing(A)

writing(A) washing(A)

 (Having just entered the solution space, LOBBY takes the initiative and
attempts to educate itself as to its location and immediate surroundings.
LOBBY does this by posing questions to other agents. As a Space agent,
LOBBY has the ability to engage in an interactive dialog with any member
of the agent population including the human designer agent. While some of
these questions can be directed toward a certain agent specifically, others
are posed to the general agent population as a whole.)

(The first order of business for LOBBY is to announce its arrival as a
member of the evolving solution. This takes the form of an open
declaration to all other Space agents. Upon receiving such an
announcement, a Space agent will in turn send back a reply indicating its
existence in the design world)

LOBBY :   “Hello. My name is LOBBY and I have just entered the solution space. Who
else is out there?”

(While awaiting responses from any other spaces that may exist, LOBBY
also begins the process of trying to satisfy its needs and desires. To
perform this task, LOBBY has at its disposal a robust collection of expert
consultants in the form of service-agents.)
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 (The set of needs and desires first addressed by LOBBY are related to
lighting. The first step in this task is to determine the degree to which the
designer wishes to involve daylight as opposed to artificial lighting.)

LOBBY :   “What are the daylight utilization importance and percentages for desired
Task Illumination by Daylight (TID), and Background Illumination by Daylight (BID)?”

(Responding to requests of this nature, the Designer agent replies to
LOBBY conveying the user’s intentions with respect to daylight utilization.)

DESIGNER AGENT :   “LOBBY, daylight utilization is necessary and the desired TID
is greater than 50% and BID is greater than 90%.”

(Based on the desired TID and BID, LOBBY then attempts to determine
exactly how much daylight must enter its space to satisfy its illumination
requirements.)

LOBBY :   Determines maximum daylight task illumination (DTI) and maximum daylight
background illumination (DBI) as follows:

DTI = (TID/100)(highest task illum. among activities occurring in the space)
= (50.0/100)(60 FC)
= 30 FC

DBI = (BID/100)(highest background illum. among activities occurring in the space)
= (90.0/100)(30 FC)
= 27 FC

(Once the maximum DTI and DBI have been determined, LOBBY inquires
as to the amount of window area it would require to obtain its desired
lighting levels.)

LOBBY :   “What is the minimum window area required in my shortest wall to satisfy a
DTI requirement of 30 FC?”  (The relevant characteristics of the selected wall within its
space environment accompany the request).

(Fielding this request, the Daylight agent employs the services of another
agent to assist in formulating a response.)

DAYLIGHT :   “What is the average external illumination level for the climate of Pismo
Beach, CA.?”

CLIMATE :   “DAYLIGHT, the average external illumination level for Pismo Beach, CA
is 1250 FC.”

(In formulating its recommendations, DAYLIGHT makes several
assumptions including: a reference point located in the center of the space
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at an elevation of 3 ft.; an Internally Reflected Component of Daylight
Factor equal to 15% of the Sky Component; transmission loss due to glass,
window frame, and dirt to be 20% of the Sky Component; and no external
obstructions that would produce an Externally Reflected Component. In
addition, windows are assumed to have a sill height of 3 ft. and continue to
the ceiling. To satisfy LOBBY’s request, DAYLIGHT employs several
formulas to determine an appropriate window area. After applying these
formulas, DAYLIGHT determines that a DTI requirement of 30 FC. would
be satisfied by a window having a width of approximately 20 ft. However,
the wall which LOBBY selected to contain this window is only 15 ft. wide.
With this in mind, DAYLIGHT goes one step further and calculates the
illumination which LOBBY could obtain by devoting the entire 15 ft. span to
a window wall.)

DAYLIGHT :   “LOBBY, based on your specifications you would need to have a
window with a width of 20 ft. to provide 30 FC. of illumination. However, considering
that your selected wall has a span of only 15 ft., you could obtain 17.5 FC. of
illumination if you devoted the entire wall to window area.”

(Receiving DAYLIGHT’s recommendations, LOBBY soon realizes its
predicament. To obtain at least 50% of its task illumination from daylight
requires a window 20 ft. wide. The illumination resulting from a 15 ft.
window under the current configuration is only 17.5 FC. Unwilling to
accept this value, LOBBY determines another course of action. LOBBY
repeats its request for the daylight analysis but this time focusing on its
larger wal,l which has a span of 18 ft.)

LOBBY :   “What is the minimum window area required in my largest wall to satisfy a
DTI requirement of 30 FC?” Assume that the relevant characteristics of the selected wall
within its space environment accompany the request.

DAYLIGHT :   “LOBBY, based on your specifications you would need to have a
window with a width of 12 ft. to provide 30 FC of illumination.”

(Satisfied with this result, LOBBY accepts DAYLIGHT’s recommendation
and modifies itself so that the selected wall now has an external orientation
and reflects the insertion of a 12 ft. wide window. It should be noted that
LOBBY’s decision regarding the alignment of the wall containing the
window only goes as far as deciding on internal or external orientation.
Taking into account the direction-independent quality of daylight with
respect to illumination, deciding on a geographic orientation is somewhat
premature and is, therefore, not a concern at this point.)

(As an aside, if LOBBY’s current configuration did not, for example, allow
for the placement of an adequately sized window in the target wall then
LOBBY would still have a number of alternative courses of action. These
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alternatives range from simply accepting a lower illumination level, but
flagging a daylight domain violation, to requesting authorization from the
user to resize its shorter wall to now allow for the insertion of a 20 ft. wide
window thus providing the desired daylight illumination level within the
space.)

The scenario continues with the introduction of additional Space agents and concurrent
consideration of multiple domains, such as noise control, energy conservation through the
adoption of passive solar design principles, and so on.
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