
1

InterSymp – 2004
16th International Conference on Systems Research,

Informatics and Cybernetics
(July 29-August 5, 2004, Baden-Baden, Germany)

Pre-Conference Proceedings of the Focus Symposium
on

Intelligent Software Systems for the New Infostructure

Friday, July 30, 2004

Focus Symposium Chair:

Jens Pohl
Executive Director, Collaborative Agent Design Research Center

and Professor of Architecture
College of Architecture and Environmental Design

California Polytechnic State University
San Luis Obispo, California, USA

Sponsored by:

The International Institute for Advanced Studies
in Systems Research and Cybernetics

and
Society for Applied Systems Research

Professor George E. Lasker
Chairman

ISBN: 1-894613-41-4

2

3

Preface

Over the past several years the papers in this annual series of symposia have increasingly
centered on the realization of a human-computer collaboration environment in which computer-
based software agents with reasoning capabilities provide meaningful support to human decision
makers. It is therefore quite appropriate that the first paper in the 2004 Proceedings should
address the historical evolutionary path of ‘intelligent’ software leading to the goal of a semantic
Web environment. The realization of this goal is now in sight, driven by public security threats
that are increasingly relying on technology for effective countermeasures.
In the U.S. during the past two years there has been increasing government activity focused on
the creation of a communication environment that will provide seamless horizontal and vertical
connectivity among all echelons in support of an effectively coordinated disaster response
capability. The new U.S. Department of Homeland Security (DHS) has coined the word
Infostructure to describe this environment. For the U.S. Department of Defense (DoD) the
Global Information Grid or GIG is the vision that will guide the implementation of such a
capability, in the form of an integrated network of knowledge management services. Succinctly
stated both the Infostructure and the GIG are envisioned as a net-centric environment of
seamlessly interconnected data sources and utilization capabilities. This includes "… the
globally interconnected, end-to-end set of information capabilities, associated processes, and
personnel for collecting, processing, storing, disseminating, and managing information on
demand to warfighters, defense policymakers, and support personnel." (Stenbit 2003).
These parallel and closely related U.S. efforts (i.e., the Infostructure-GIG vision) are driven by
the increasing need to automate at least the lower level data interpretation tasks that have been
the almost exclusive province of the human users of computer systems for the past 40 years.
This has become necessary for several reasons. First, the increased ability to collect and store
data in computers has created a bottleneck. The need to interpret the vast amounts of data has
simply exceeded the availability of human resources. Second, human resources are desperately
needed for higher-level information analysis to counteract increasing threats from adversaries.
Currently, most of the available human resources are fully employed at the lower levels of
tedious data interpretation. Third, there is an increasing need for more rapid and accurate
decision-making capabilities. Typically, commanders and their staff find themselves in
continuous replanning mode as the most carefully laid plans require significant adjustments due
to unforeseen events that will inevitably occur during implementation.

The response to these requirements has been the desire to create a knowledge management
environment. So, what is knowledge management? Knowledge is an intellectual facility that
allows a person to perform tasks that require an understanding of what has to be accomplished,
the formulation of a plan of action, and the skills that are required to undertake the task. It
normally involves the acquisition over time of factual information, associations that bind the
factual information into more general patterns, principles, rules, and problem solving skills. A
person acquires knowledge through experience, formal education, and a life-long process of self-
education. Accordingly, knowledge is a commodity that is held within the brain of each
individual person. Both the communication of this personal knowledge from one individual to
another and the collection of the knowledge as a corporate asset has become a serious concern of
organizations, and is commonly referred to as knowledge management.

4

The implementation of the Infostructure-GIG vision as a knowledge management environment
will require: (1) the formalization of communities of interest; (2) the standardization of
nomenclature and reference tables; (3) the definition of logical data models; (4) the publication
of data encoding protocols and formats (i.e., metadata registries); (5) the adoption of data
transmission standards; (6) the development of functionally created ontologies that allow data to
be placed in context; (7) the publication of business rules and the encoding of these rules in
software agents with automated reasoning capabilities; and, (8) the formulation of policies,
conventions, and processes, designed to facilitate planning, problem solving, and decision-
making tasks.

What is the appropriate architecture for the realization of the Infostructure-GIG vision? To
answer this question we need to first consider the products of the current data-processing
environment, because these products will continue, at least for the near term, to serve as the
principal data sources of the new knowledge management environment. Since the early 1970s
the ability of computers to store large amounts of data has been increasingly exploited by
industry and government. The potential bottleneck presented by these electronic data stores did
not become apparent until more recent times with the increasing desire and expectation that their
contents should be utilized for planning and decision making purposes. The need to integrate and
analyze data from multiple sources led to the concept of a Data Warehouse that is updated
periodically, usually with summarized data collected from operational data sources. Structured
into compartments or Data Marts, each focused on a particular functional area, the Data
Warehouse serves as a basis for analyzing historical trends with On Line Analytical Processing
(OLAP) tools and projecting future conditions with Data Mining tools. However, the usefulness
of these tools is greatly constrained by lack of context. Even though the data in Data Warehouses
are typically stored in relational databases, they commonly contain few relationships that are
focused on the exploitation of the data in a particular functional domain. Therefore, the ability of
OLAP and Data Mining tools to answer What?, Why? and What-if? questions is severely
constrained by the very limited context provided by the data.

Where the operational data sources are of good quality and can be used directly for decision-
making purposes, gateways have been implemented in recent times to provide convenient access
to disparate data sources. These gateways are referred to as Data Portals and do not in
themselves store data. Apart from accessing the data sources the principal functions of such
Portals include the presentation of data to the user. Some Data Portals also include data analysis
tools aimed at enriching the presentation capabilities.

Data Portals and Data Warehouses represent a structured data level that integrates the multiple,
fragmented databases, files, documents, and e-mail messages that constitute the often only
moderately organized operational data flow. By providing access to both the operational data
(Data Portals) and the archived summary data (Data Warehouses) this structured data level
represents the integrating Data Layer that constitutes the bottom layer of a knowledge
management system, serving as a necessary foundation for an upper Information Layer (Figure
1). The upper layer utilizes one or more internal information models or ontologies (Figure 2) to
provide context for the automatic reasoning capabilities of software agents.

What is an ontology? The term ontology is loosely used to describe an information model, rich
in relationships that focuses on the utilization (rather than the taxonomic structure) of data. An
ontology, therefore, is a virtual representation of some real world environment that provides

5

context (e.g., the management of a transport corridor, the loading of a cargo ship, the
coordination of a military theater, the design of a building, and so on). The elements of an
ontology include objects and their characteristics, different kinds of relationships among objects,
and the concept of inheritance. Ontologies are also commonly referred to as object models.
However, strictly speaking the term ontology has a much broader definition. It actually refers to
the entire knowledge in a particular field. In this sense an ontology would include both an object
model and the software agents that are capable of reasoning about information within the context
provided by the object model.

 Figure 1: Schematic architecture of a Figure 2: Portion of a typical information
 knowledge management system model (ontology) in the logistic domain

So, what are software agents? The term ‘agent’ has been applied very loosely in recent years.
There are several different kinds of software agents. Symbolic reasoning agents are most
commonly associated with knowledge management systems. These agents may be described as
software modules that are capable of reasoning about events (i.e., changes in data received from
external sources or as the result of internal activities) within the context of the information
contained in the internal information model (i.e., ontology). The agents collaborate with each
other and the human users as they monitor, interpret, analyze, evaluate, and plan alternative
courses of action.

Referring back to Figure 1, the interface between the lower data-processing layer and the higher
information management layer consists of a translation facility that is capable of mapping the
data schema of the lower layer to the information representation (i.e., ontology) of the upper
layer. In this manner, the ontology of the Information Layer can be populated with near real-time
operational data and archived summary data from Data Warehouses. This mapping process
should be bidirectional so that the results of agent actions can be readily transmitted to any data-
centric applications that reside in the Data Layer. The interface level that supports this critical
process is now commonly referred to as the Mediation Layer. Within this architecture the
Mediation Layer will include not only metadata registries, but also a powerful suite of generic

6

information services can be used by communities of interest to maintain their metadata and
comply with enterprise-wide requirements in information management areas such as security,
privacy, and application software installation and configuration policies. These generic
computing services should also include software tools that will allow the automated verification
of the compliance of ontologies with their underlying logical data models and standardized
nomenclatures. Conversely, GES computing services could also assist application developers by
generating a base set of ontology elements from the appropriate domain of a logical data model.
The executive agent for GES in the DoD community is the Defense Information Systems Agency
(DISA).

Finally, what is metadata? Often succinctly defined as data about data, metadata includes the
descriptions that define the organization of data and information so that the interpretation of such
data and information can be undertaken automatically by computer software. Metadata typically
includes specifications for nomenclature (i.e., vocabulary), the structure of data in logical data
models, taxonomies, interfaces, mapping tables, object models (i.e., ontologies), and business
rules. The DoD Net-Centric Data Strategy (Stenbit 2003, 6-8) describes three principal
mechanisms for storing and processing metadata, as follows. Metadata Registries are used to
describe the structure, format, and definition of data. They may be implemented as a software
application that uses a database to facilitate the storing and searching for data, definitions of data,
relationships among data, and document formats. In this respect a Metadata Registry is like a
library document that defines the kind of information that is required to be printed on the cards
of a library card catalog (i.e., it does not describe any particular library holding, but only the kind
of information that needs to be provided for all holdings). A Metadata Catalog, on the other
hand, provides the information stipulated by the Metadata Registry for each individual set of
data. This information is also typically stored in a database. Shared Space refers to the storage of
the actual data that are described in the Metadata Catalog. In the three-layer architecture of a
typical knowledge management system shown in Figure 1, the Metadata Registries and Catalogs
reside in the Mediation Layer while the actual data (i.e., Shared Spaces) is found in the Data
Layer.

Jens Pohl, June 2004

(jpohl@calpoly.edu) (www.cadrc.calpoly.edu)

Stenbit, J.; ’Department of Defense Net-Centric Data Strategy’; US Department of Defense, Chief Information Officer, Wash., DC, May 9, 2003.

7

InterSymp-2004
International Conference on Systems Research,

Informatics and Cybernetics

Focus Symposium
on

Intelligent Software Systems for the New Infostructure
Friday, July 30, 2004

TABLE OF CONTENTS

Section 1: Information-Centric Technology Underpinnings

The Evolution of Intelligent Computer Software and the Semantic Web 11

Jens G. Pohl, Collaborative Agent Design Research Center, California

Polytechnic State University, San Luis Obispo, California, USA.

Approaching Semantic Interoperability: A Multi-Agent Observation- 35

Based Communication Framework

Adam Gray, ARES Agent Team, CDM Technologies, Inc., San Luis Obispo,

California, USA.

Theory of Standard K-Language as a Model of a Universal Semantic 51

Networking Language

Vladimir Fomichov, Faculty of Applied Mathematics, Moscow State Institute

of Electronics and Mathematics, Moscow, Russia.

Section 2: Management of Data in Context

Real-Time Object-Oriented Databases: Theory and Applications 65

Michael P. Card, Sensis Corporation, Dewitt, New York, USA.

8

Model-Based Data Management for Mediation Services for Intelligent 75

Software Agents

Andreas Tolk and John Garcia, Old Dominion University, Norfolk, and

General Dynamics, Arlington, Virginia, USA.

Drill-Down Operator in Information Systems 81

M. Baszun, B. Czejdo C. Putonti and J. Czejdo,Warsaw Technical University,

Warsaw, Poland, Loyola University, New Orleans, Louisiana, and Edinboro

University of Pennsylvania, Edinboro, Pennsylvania, USA.

Section 3: Knowledge Management Applications

An Agent-Based Decision Support Environment in Collaboration Platforms 97

Uwe Forgber and Tim Kalbitzer, conject AG, Munich, Germany.

Knowledge Sharing, not MetaKnowledge 105

Gianfranco Carrara, Antonio Fioravanti and Umberto Nanni, Dipartimento

di Architettura e Urbanistica per l’Ingegneria and Dipartimento di Informatica

e Sistemistica, Universita degli Studi di Roma “La Sapienza”, Rome, Italy.

Knowledge Management and Organizational Memory in CAS Environments 119

Ansgar Killing, K+H Architects, Stuttgart, Germany.

Collaborative Project Delivery 125

Barry Jones, Construction Management Department, College of Architecture

and Environmental Design, California Polytechnic State University, San Luis

Obispo, California, USA.

9

Section 1:

Information-Centric Technology Underpinnings

10

11

The Evolution of Intelligent Computer Software
and the Semantic Web

Jens Pohl, Ph.D.
Executive Director, Collaborative Agent Design Research Center (CADRC)

California Polytechnic State University (Cal Poly)
San Luis Obispo, California, USA

Abstract
The purpose of this paper is to trace the evolution of intelligent software from data-centric
applications that essentially encapsulate their data environment to ontology-based applications
with automated reasoning capabilities. The author draws a distinction between human
intelligence and component capabilities within a more general definition of intelligence, which
may be embedded in computer software. The primary vehicle in the quest for intelligent software
has been the gradual recognition of the central role played by data and information, rather than
the logic and functionality of the application. The three milestones in this evolution have been:
the separation of data management from the internal domain of the application; the development
of standard data exchange protocols such as XML that allow machine interpretable structure and
meaning to be added to data exchange packages; and, the ability to build information models that
are rich in relationships and are thereby capable of supporting the automated reasoning
capabilities of software agents.
The author suggests that the vision of a Semantic Web environment in which ontology-based
Web services with intelligent capabilities are able to discover each other and individually or in
self-configured groups perform useful tasks, is not only feasible but imminently realizable. The
capabilities of an experimental proof-of-concept system featuring semantic Web services that
was demonstrated at an Office of Naval Research Workshop in 2002 is described in summary
form.

Keywords
agents, artificial intelligence, data-centric, information-centric, Internet, object model, ontology,
Semantic Web, semantic Web services, XML

The Concept of ‘Intelligence’
Before we can proceed with the theme of this paper it is necessary to briefly discuss the concept
of intelligence and the sense in which this concept is applied by the author. There are those that
have advanced strong arguments that intelligence is the province of living creatures and that
machines, such as electronic computers, do not and will never display any truly intelligent
capabilities (Dreyfuss 1979 and 1997, Dreyfuss and Dreyfuss 1986, Lucas 1961, Searle 1980 and
1992). In most cases these arguments are based on the premise that intelligent behavior is closely
associated with the human body and mind, and that the powerful notions of common sense and
intuition are essential ingredients of intelligence. It is not the purpose of this paper to attempt to
counter these arguments or even take sides in this debate.

12

Instead, the author wishes to advance another view of intelligence, namely that human
intelligence and intelligence are not synonymous. We human beings are a decidedly self-
centered species. We tend to view our capabilities and our interactions with our surroundings
from a very personal point of view. It is therefore not surprising that we should consider
intelligence, which is essentially our most powerful asset, to be restricted to living creatures
among whom we believe ourselves to reign supreme.
Webster’s Dictionary (Random 1999) defines intelligence as the “… capacity for learning,
reasoning, and understanding;”. This definition suggests that there are component capabilities
that contribute to the concept of intelligence. Further, these component capabilities are not
necessarily equally powerful. In other words, it may be argued that there are levels of
intelligence and that at the lowest level such capabilities must include at least the ability to
remember. Higher levels of intelligence include reasoning, learning, discovering, and creating.
Certainly at least some of these intelligent capabilities can be embedded in computer software.
For example, computers excel at storing and recalling data in virtually unlimited quantities and
over very long periods of time. Computers can reason about data quite effectively, if adequate
context is made available with the data. Also, computers have been shown to have learning-like
capabilities, and computers can discover information through associations and pattern matching.
There is no intention by the author to suggest that computer intelligence is equal or even similar
to human intelligence, but rather that computer intelligence and human intelligence may be
applied in parallel to complement each other. Furthermore, a strong case can be made in support
of the view that there is an urgent need for intelligent computer capabilities due to the mounting
expectations of accuracy, quality and timeliness in a globally connected environment of rapidly
increasing complexity.

The Need for Software Intelligence
There are essentially two compelling reasons why computer software must increasingly
incorporate more and more ‘intelligent’ capabilities. The first reason relates to the current data-
processing bottleneck. Advancements in computer technology over the past several decades have
made it possible to store vast amounts of data in electronic form. Based on past manual
information handling practices and implicit acceptance of the principle that the interpretation of
data into information and knowledge is the responsibility of the human operators of the
computer-based data storage devices, emphasis was placed on storage efficiency rather than
processing effectiveness. Typically, data file and database management methodologies focused
on the storage, retrieval and manipulation of data transactions, rather than the context within
which the collected data would later become useful in planning, monitoring, assessment, and
decision-making tasks.
The second reason is somewhat different in nature. It relates to the complexity of networked
computer and communication systems, and the increased reliance of organizations on the
reliability of such information technology environments as the key enabler of their effectiveness,
profitability and continued existence.

The Data-Processing Bottleneck
This requires further explanation, as a fundamental issue and one of the primary forces
driving the evolution of software intelligence. The design of any information system
architecture must be based on the obvious truth that the only meaningful reason for

13

capturing and storing data is to utilize them in some planning or decision-making process.
However for data to be useful for planners and decision makers they have to be
understood in context. In other words, data are just numbers and words that become
meaningful only when they are viewed within a situational framework. This framework
is typically defined by associations that relate data items to each other and peripheral
factors, which influence the meaning of the data in a particular situation. Succinctly
stated, numbers and words (i.e., data) found within a rich set of relationships become
information, which provides the necessary context for interpreting the meaning of the
data, the recognition of patterns, and the formulation of rules, commonly referred to as
knowledge.
The larger an organization the more data it generates itself and captures from external
sources. With the availability of powerful computer hardware and database management
systems the ability of organizations to store and order these data in some purposeful
manner has dramatically increased. However, at the same time, the expectations and
need to utilize the stored data in monitoring, planning and time-critical decision-making
tasks has become a major human resource intensive preoccupation. In many respects this
data-centric focus has become a bottleneck that inhibits the ability of the organization to
efficiently and effectively accomplish its mission.

Figure 1: Transition from data to knowledge Figure 2: Human interpretation of data

The reasons for this bottleneck are twofold. First, large organizations are forced to focus
their attention and efforts on the almost overwhelming tasks involved in converting
unordered data into purposefully ordered data (Figure 1). This involves, in particular, the
establishment of gateways to a large number of heterogeneous data sources, the
validation and integration of these sources, the standardization of nomenclatures, and the
collection of data elements into logical data models. Second, with the almost exclusive
emphasis on the slicing and dicing of data, rather than the capture and preservation of
relationships, the interpretation of the massive and continuously increasing volume of

14

data is left to the users of the data (Figure 2). The experience and knowledge stored in
the human cognitive system serves as the necessary context for the interpretation and
utilization of the ordered data in monitoring, planning and decision-making processes.
However, the burden imposed on the human user of having to interpret large amounts of
data at the lowest levels of context has resulted in a wasteful and often ineffective
application of valuable and scarce human resources. In particular, it often leads to late or
non-recognition of patterns, overlooked consequences, missed opportunities, incomplete
and inaccurate assessments, inability to respond in a timely manner, marginal decisions,
and unnecessary human burn-out. These are symptoms of an incomplete information
management environment. An environment that relies entirely on the capture of data and
the ability of its human users to add the relationships to convert the data into information
and thereby provide the context that is required for all effective planning and decision-
making endeavors.
A more complete information management environment considers data to be the bottom
layer of a three-layer architecture, namely:

A Data Layer that integrates heterogeneous data sources into accessible and
purposefully ordered data. It typically includes a wide variety of repositories
ranging from simple textual files to databases, Data Portals, Data Warehouses,
and Data Marts.
A Mediation Layer that defines the structure of the data sources (i.e., logical data
models), data transfer formats, and data transformation rules. The two principal
purposes of the Mediation Layer are to facilitate the automated discovery of data
and to support the mapping of data to information. In other words, the Mediation
Layer serves as a registry for all definitions, schemas, protocols, conventions, and
rules that are required to recognize data within the appropriate context. The
Mediation Layer also serves as a translation facility for bridging between data
with structural relationships (e.g., based on a logical data model) and information
that is rich in contextual relationships.
An Information Layer that consists of many functionally oriented planning and
decision-assistance software applications. Typically, these applications are based
on internal information models (i.e., object models or ontologies) that are virtual
representations of particular portions of the real world context. By providing
context, the internal information model of each application is able to support the
automated reasoning capabilities of rule-based software agents.

In such a three-layered information management environment the Mediation Layer
continuously populates the information models of the applications in the Information
Layer with the data changes that are fed to it by the Data Layer. This in turn
automatically triggers the reasoning capabilities of the software agents. The
collaboration of these agents with each other and the human users contributes a powerful,
near real-time, adaptive decision-support environment. The agents can be looked upon as
intelligent, dynamic tools that continuously monitor changes in the real world. They
utilize their reasoning and computational capabilities to generate and evaluate courses of
action in response to both real world events and user interactions. As a result the human
user is relieved of many of the lower level filtering, analysis, and reasoning tasks that are
a necessary part of any useful planning and problem solving process. However, just as

15

importantly, the software agents continuously and tirelessly monitor the real world
execution environment for changes and events that may impact current or projected
plans.

The Increasing Complexity of Information Systems
The economic impact on an organization that is required to manually coordinate and
maintain hundreds of interfaces between data-processing systems and applications that
have no ‘understanding’ of the data that they are required to exchange, is enormous.
Ensuing costs are not only related to the requirement for human resources and technical
maintenance (normally contracted services), but also to the indirect consequences of an
information systems environment that has hundreds of potential failure points.
Recent studies conducted by IBM Corporation and others have highlighted the need for
autonomic computing as the organizational expectations and dependence on information
services leads to more and more complex networked computer solutions (Ganek and
Corbi 2003). In the commercial sector “…it is now estimated that at least one-third of an
organization’s IT (Information Technology) budget is spent on preventing or recovering
from crashes” (Patterson et al. 2002). Simply stated (Figure 3), autonomic computing
utilizes the ‘understanding’ that can be represented within an information-centric
software environment to allow systems to automatically: (1) reconfigure themselves
under dynamically changing conditions; (2) discover, diagnose, and react to disruptions;
(3) maximize resource utilization to meet end-user needs and system loads; and, (4)
anticipate, detect, identify, and protect themselves from external and internal attacks.

 Figure 3: Desirable autonomic capabilities Figure 4: Autonomic self-healing requirements

These same studies have found that more than 40% of computer system disruptions and
failures are due to human error. However, the root cause of these human errors was not
found to be lack of training, but system complexity. When we consider that computer
‘downtime’ due to security breaches and recovery actions can cost as much as (US)$2

16

million per hour for banks and brokerage firms, the need for computer-based systems that
are capable of controlling themselves (i.e., have autonomic capabilities) assumes critical
importance.
A core requirement of autonomic computing is the ability of a computer-based
information system to recover from conditions that already have caused or will likely
cause some part(s) of the system to fail. As shown in Figure 4, this kind of self-healing
capability requires a system to continuously monitor itself so that it can identify, analyze
and take mitigating actions, preferably before the disruption takes place. In addition, the
system should be able to learn from its own experience by maintaining a knowledge base
of past conditions that have caused malfunctions and the corrective measures that were
taken.

In summary, the continued expansion of networks (e.g., the Internet and its successors) will
provide seamless connectivity among countless nodes on a global scale. While the collection of
data has already increased enormously over the past decade, the availability of such a global
network is likely to increase the volume of data by several orders of magnitude. Such a volume
of raw data is likely to choke the global network regardless of any advances in communication
and computer hardware technology. To overcome this very real problem there is a need to collect
data in context so that only the data that are relevant and useful are collected and transmitted
within the networked environment. Most (if not all) of the necessary filtering must be achieved
automatically for at least three reasons. First, organizations cannot afford to utilize human
resources for repetitive tasks that are tedious and require few human intellectual skills. Second,
even if an organization could afford to waste its human resources in this manner it would soon
exhaust its resources under an ever-increasing data load. Third, it does not make sense for an
organization to ‘burn-out’ its skilled human resources on low-level tasks and then not have them
available for the higher-level exploitation of the information and knowledge generated by the
lower level tasks.
Finally, the increased reliance on computer-based information systems mandates a level of
reliability and security that cannot be achieved through manual means alone. The alternative, an
autonomic computing capability, requires the software that controls the operation of the system
to have some understanding of system components and their interaction. In other words,
autonomic computing software demands a similar internal information-centric representation of
context that is required in support of the knowledge management activities in an organization. In
both cases the availability of data in context is a prerequisite for the reasoning capabilities of
software agents (i.e., the automatic interpretation of information by the computer).

A Framework for Assessing Software Capabilities
Just like the initial conception and implementation of computing devices was driven by the
human desire to overcome the limitations of manual calculation methods, the advancements in
computing technology during the past 50 years have been driven by the desire to extend the
usefulness of computer-based systems into virtually every human activity. It is not surprising that
after several orders of magnitude increases in hardware performance (i.e., computational speed
and data storage capacity (Pohl 1998)) had been achieved, attention would gradually shift from
hardware to software.

17

Increasingly software is being recognized as the vehicle for computers to take over tasks that
cannot be completely predefined at the time the software is developed. The impetus for this
desire to elevate computers beyond data-processing, visualization and predefined problem-
solving capabilities, is the need for organizations and individuals to be able to respond more
quickly to changes in their environment. Computer software that has no ‘understanding’ of the
data that it is processing must be designed to execute predefined actions in a predetermined
manner. Such software performs very well in all cases where it is applied under its specified
design conditions and performs increasingly poorly, if at all, depending on how much the real
world conditions vary from those design specifications. Instead, what is needed is software that
incorporates tools, which can autonomously adapt to changes in the application environment.
Adaptable software presupposes the ability to perform some degree of automated reasoning.
However, the critical prerequisite for reasoning is the situational context within which the
reasoning activity is framed. It is therefore not surprising that the evolution of computer software
in recent years has been largely preoccupied with the relationship between the computational
capabilities and the representation of the data that feed these capabilities. One could argue that
the historical path from unconnected atomic data elements, to data structures, relational
databases, data objects, object-oriented databases, object models, and ontologies, has been driven
by the desire to provide information context in support of automated reasoning capabilities.
However, to be able to present a true historical perspective of the evolution of software it is
necessary to take into account a more comprehensive set of criteria. In fact, there are several
factors that have in the past and are continuing to contribute to the evolution of intelligent
software. This section will attempt to establish a set of categorization criteria to serve as a
framework for tracing the capabilities of software. Since these capabilities are closely related to
the design and implementation of the computer-based environment within which the software is
required to operate, the proposed framework will utilize system architecture as a yardstick and
milestone component. The following eight system architectures have been selected to serve as
milestones for the assessment of software capabilities:

• Single data-centric applications that operate in a stand-alone mode and receive data
from user interaction and other closely coupled sources (e.g., data files and dedicated
databases).

• Confederation of linked data-centric applications with application-to-application
data bridges. Also described as ‘stove-pipe’ systems because the system components
are essentially hardwired to only work together within their confederation.

• Shared database systems consisting of multiple data-centric applications that are able
to share data between themselves and a common repository, through application-to-
database bridges. The repository may be either a single database or a distributed
database facility.

• Distributed expert systems with dedicated knowledge bases (i.e., rules) and a single
shared fact list (i.e., data).

• Distributed static information-based applications with collaborative agents, capable
of exchanging data with external data-centric applications.

• Distributed static information-sharing applications with collaborative agents,
capable of interoperating at the ‘information’ level with other ontology-based
applications and capable of exchanging data with external data-centric applications.

18

• Distributed extensible information-sharing applications with collaborative agents,
capable of interoperating at the ‘information’ level with other ontology-based
applications and capable of extending their internal information representation (i.e.,
ontology) during execution.

• Semantic Web services capable of discovering other Web services and dynamically
configuring themselves into distributed systems on an as-needed basis.

Figure 5: Software characterization categories and their capability criteria

The software capabilities that have been in the past or are still today prevalently applied in each
of these system architectures are characterized within six capability groups as shown in Figure 5.
While the first of these groups (i.e., Group (1) System Configuration) is intended to describe
principal architectural features, the other five groups are focused on the degree to which the
software is capable of representing and processing data with or without context in partnership
with the human user. Fundamental in this respect is Group (2) Internal Representation. The
manner in which an application represents the data that it is intended to manipulate essentially
determines the level of software intelligence that the application is capable of supporting. Group
(2) differentiates among applications that represent data without context (i.e., ‘raw data’ and
‘objectified data’), applications that provide context in the form of a static information model
(i.e., sparse information model’ and ‘rich information model’) and applications with information
models that are extensible during execution (i.e., ‘extensible information model’ and ‘dynamic
information model’). The remaining four groups address the general solution methodology
available to the application, its decision-support capabilities, and the level of internal
‘understanding’ of its capabilities, activities and intrinsic nature. The divisions within each of the

19

groups will be defined in more detail during the discussion of each of the eight system
architectures.
The first system architecture for discussion (Figure 6) is representative of the typical early
computer applications, namely a stand-alone application that receives all of its data from the user
and/or data sources that are considered to be part of the application. Whether or not the data are
treated as discrete elements or objects, the Internal Representation includes only a very limited
set of relationships and therefore lacks context. Under these circumstances the Assistance
Capabilities are limited to predefined solutions utilizing static algorithms, no internal
understanding can be provided by the representation of data without relationships, and the
Intellectual Capabilities of the software are restricted to ‘remembering’ since the data are stored
in the computer. The second system architecture (Figure 7) adds data bridges between several
data-centric applications. Each bridge is simply an application-to-application mapping of the data
format of one application to the other. Therefore, the only capability that this architecture adds to
the previously discussed architecture is that the System Configuration supports a confederation of
tightly linked applications.

 Figure 6: Single data-centric applications Figure 7: Confederation of linked

 data-centric applications

The shared database architecture (Figure 8) constitutes a major improvement over the first two
system architectures by separating the data from the application and placing the former into a
common repository that is external to all of the applications. The recognition that data and not
the application should be the dominant component of a data-processing environment sets the
stage for interoperability and intelligent software. However, it does not directly contribute any
additional capabilities to the software criteria. The reason is the absence of data context, and this
applies equally to the three system architectures discussed so far.

20

 Figure 8: Shared database systems Figure 9: Distributed expert systems

The distributed expert system architecture shown in Figure 9 on the other hand, by virtue of its
internal knowledge base of rules, driven by a shared repository of facts, adds several new
capabilities to the software. Each knowledge base provides relationships and therefore represents
a local component of what might be characterized as a sparse information model. This model
provides adequate support for some form of automated reasoning within the typically narrow
domain of each expert system. Although the expert systems (or agents) now operate as tools
rather than predetermined solutions, their rules are nevertheless predefined and typically not
extensible during execution.
For at least two reasons the concept of expert systems represents a milestone in the transition
from data-processing to information-centric software. First, it showed that automated rule-based
reasoning is in fact feasible and thereby allowed the field of artificial intelligence to regain some
confidence after its earlier failures. Second, the largely opportunistic pattern-matching nature of
an expert system laid the foundations for the notion of demon-like modules with particular data
interests that could be triggered into action by data changes. Over the next decade these modules
developed into flexible software agents that are situated in some environment and capable of
autonomous actions (Wooldridge and Jennings 1995, Pohl et al. 2001 (32-33)). It was highly
desirable for these agents to be capable of acting without the direct intervention of human users
(or other agents), thereby providing the system with some degree of control over its own actions
and internal state. The ability to achieve this level of autonomous behavior was greatly facilitated
by situating the agent in a sufficiently well represented environment, which it can monitor and
act upon. Triggered by its environment the agent is then able to respond to changes in the
environment, exercise intiative through goal-directed reasoning capabilities, and utilize the
services of other agents (including the human user) to supplement its own problem-solving
capabilities in a collaborative fashion.

21

The desire for software agents to perform increasingly more valuable and human-like reasoning
tasks focused a great deal of attention on the virtual representation of the real world environment
in which the agent is situated. It became clear that the reasoning capabilities of a rule-based
software agent depend largely on the richness of the virtual representation of this physical and
conceptual environment. Taking advantage of the capabilities of object-oriented languages,
which allow objects to be represented as classes with attributes and relationships, a new
generation of application software with internal object-based information models was born
(Figures 10, 11 and 12). These are often referred to as ontology-based applications and are
typically distributed in nature.
It should be noted that the term ontology is commonly used rather loosely as a synonym for
object model. Strictly speaking, however, the term ontology has a much broader definition. It
actually refers to the entire knowledge in a particular field. In this sense, an ontology includes
both an object model and the software agents that are capable of reasoning about information
within the context provided by the object model (i.e., since the agents utilize business rules,
which constitute some of the knowledge within a particular domain). In this paper the common
use of the term ontology as an object model (i.e., context) is implied.

 Figure 10: Information-based applications Figure 11: Information-sharing applications

The information-based architecture shown in Figure 10 typically consists of components (e.g.,
agents and user-interfaces) that communicate with each other through an information-serving
collaboration facility. Each component includes a relevant portion of the ontology and a
subscription profile of the kind of information that it is interested in receiving from this facility.
Since the components have at least a limited understanding of the real world situation only the
changes in the situation need to be communicated to them. While the existence of a subscription
service obviates the need for computationally expensive queries in most cases, the ability to
restrict the communication to changes in information also greatly reduces the amount of data that
has to be exchanged. This applies equally to the information-sharing architecture and the

22

extensible information architecture shown in Figures 11 and 12, respectively. Also, in all three of
these software architectures system capabilities support (and promote) decoupled applications
that interact via these services, which are accessed internally through clearly defined interfaces.
Apart from simplifying the design and development of such applications, this allows services to
be seamlessly replaced as long as the replacement service adheres to the same interface
definition.
The principal differences among these three architectures are related to the adaptability and
accessibility of the ontology within each of the information-centric systems. First, in both the
information-based (Figure 10) and the information-sharing (Figure 11) architectures the
ontologies are predefined at the time the applications are compiled and cannot be changed during
execution. While it is certainly possible to build into an ontology some degree of flexibility that
allows for the definition of variations of existing object types during execution, the context-based
definition of new objects requires the application to be recompiled. In other words, the ontology
is essentially static after the application has been compiled. In the extensible information-
sharing architecture shown in Figure 12, an application is able to gain and share knowledge in its
interactions with other applications that have similar capabilities, or with human users. The
ability of an application to extend its understanding (i.e., to increase the context within which its
agents are able to reason about changes in the real world situation) is still largely a subject of
research. It involves the construction of context from data with sparse relationships, which
intuitively would appear to be a poor approach. However, utilizing lexical (Fellbaum 1998) and
algorithmic approaches developed in the natural language research domain (Pedersen and Bruce
1998), some surprisingly promising progress has been made in this area in the commercial arena
(Cass 2004).

 Figure 12: Extensible information-sharing Figure 13: Semantic Web services
 applications

23

Second, in terms of accessibility, the subscription capabilities embedded in the components of an
information-based system can be equally applied across multiple systems by having the
information-serving collaboration facility of one system subscribe to the information-serving
collaboration facility of another system. This is potentially a very powerful approach that allows
information-centric systems to scale as clusters of networks within a networked environment.
The software architectures described so far (i.e., Figures 6 to 12) progressively evolved from
stand-alone systems that encapsulate their own data, to systems that are able to share data based
on predefined formats for data representation, to systems that incorporate rich but static
information models and are able to support automated reasoning capabilities, to systems that are
able to extend their internal information models in collaboration with similar ontology-based
external systems. Within this evolutionary path the transition from data-based to information-
based internal representation schemas is the enabling step that has endowed software with
increasingly intelligent capabilities. However, the fundamental mechanism for achieving these
capabilities is the ability to automatically reason about changes in the current state of the
situation described by the information model. Once expert systems (Figure 9) had demonstrated
that reasoning capabilities could be provided by conditional rules (i.e., a knowledge base of
productions) and triggered by changes in a simple fact-list, it became clear that much could be
gained by expanding the representational capabilities of the fact-list and incorporating in it many
of the relationships that were formerly encoded in the rules of the knowledge base. This
contributed to the formal separation within an application of the representation (i.e., object model
or ontology) and the logic that is applied to this representation by agents. While initially most of
the complexity of these ontology-based applications continued to reside in the agents, the
availability of more powerful modeling concepts and tools is gradually allowing more and more
of the complexity to be moved from the agents into the ontology. This suggests a trend that
appears to mirror the earlier separation of an application from the data it is designed to
manipulate (Figure 8), namely the separation of the information representation from the
applications that incorporate reasoning capabilities. The combination of this trend with an
information-centric Internet-like environment will cast applications into the role of capability-
based services.
This is the emerging concept portrayed by the semantic Web services architecture shown in
Figure 13. However, before describing this software architecture it is necessary to briefly
discuss the architecture and capabilities of the existing data-centric Web services. They typically
comprise a Web-Server that utilizes the Hyper-Text Transfer Protocol (HTTP) for
communication, the Universal Description Discovery and Integration (UDDI) protocol as part of
the standard definition of Web services registries, and a Registry that already contains an entry
for the accessing application as well as any number of other Web services. UDDI is an
international standard that defines a set of methods for accessing a Registry that provides certain
information to an accessing application. For perhaps historical reasons UDDI is structured to
provide information about organizations, such as: who (about the particular organization); what
(what services are available); and, where (where are these services available).
The Simple Object Access Protocol (SOAP) defines a protocol for the direct exchange of data
objects between software systems in a networked environment. It provides a means of
representing objects at execution time, regardless of the underlying computer language. SOAP
defines methods for representing the attributes and associations of an object in the Extensible

24

Markup Language (XML). It is actually a meta-protocol based on XML that can be used to
define new protocols within a clearly defined, but flexible framework.

Web-Services are designed to be accessed by software. In the currently prevalent data-centric
software environment they are generally clients to the middleware of data sources. The
middleware collects the required data and sends them back to the Web service, which reformats
the data using the SOAP protocol and passes them onto the requester. Depending on its original
specifications, the requesting application will have the data downloaded on disk or receive them
directly on-line. If the Web service is a data-centric application then a data-to-data translation
must be performed in much the same way as is necessary when passing data between two data-
centric applications.

Returning to the software architecture shown in Figure 13, the emphasis is on the word semantic.
In this architecture the semantics are embedded in an ontology, which provides the necessary
context for automated reasoning. A semantic Web service, therefore, is an ontology-based
application (may be mobile) with certain capabilities. Given a particular intent it seeks the
services that it determines to be necessary for satisfying this intent. Having found one or more
such Web services it self-configures itself with these discovered services into a temporary
system. Depending on needs and circumstances this transitory system may reconfigure itself by
discarding existing members when their capabilities are no longer needed, adding new members
when other requirements arise, or dissolving itself altogether once it determines that its intent has
been adequately executed.
To meet these capability objectives a semantic Web service reaches the highest-level criteria in
all but one of the six software characterization categories shown in Figures 5 and 13. First, it
operates in a competitive environment where it can select a service from several offering
candidates, and presumably negotiate the terms of acceptance. Second, it incorporates a rich and
extensible information model that will change dynamically as the semantic Web service
discovers, collaborates with, and shares ontology fragments with its transitory partners. This
provides the ability to create and maintain a desirable degree of common understanding within
the self-configured system. Third, by virtue of this common understanding the agents of each
member of the system are able to collaborate beyond the boundaries of the particular semantic
Web service that they are housed in. Furthermore, any new agents that may be generated in
response to a recently emerged need will likewise be able to collaborate globally within the
system.
Forth, the agents, which constitute the primary assistance capabilities of the system, become
highly adaptable tools. They are extensible, they may be generated dynamically during execution
to satisfy emerging new needs, and they can be implemented to operate in a mobile mode. Fifth,
the collective intellectual capabilities of the system include the ability to discover capabilities
that may be made available by external services and the ability to increase its understanding of
context by extending the ontologies of one or more of its members through their interaction and
the addition of new members to the system. It can be argued that this dynamic acquisition of new
knowledge is a form of learning, however, it does not necessarily imply an ability to create new
knowledge. Whether or not the semantic Web architecture will be able to create new knowledge
is very much a matter of conjecture at this time.
Finally, in the Internal Understanding category the semantic Web architecture is rated to have
the potential for reaching the highest criterion, ‘self-awareness’. As further explanation it should
be noted that this characterization category has been based entirely on the representational

25

capabilities of ontologies, since the author is not aware of any alternative method for creating
internal understanding in software. Ontologies are capable of not only representing physical
objects such as buildings, conveyances (e.g., cars, boats, aircraft), supplies, weapons, and
organizations, but also conceptual objects such as the notions of mobility, threat, privacy,
security, consumability, and so on. This has been the predominant focus of ontologies to date.
However, in addition, ontologies are able to represent the behavioral characteristics and
relationships of the components of the software system itself. This is the domain of autonomic
computing discussed previously, whereby a system is charged with continuously monitoring its
own performance, exposure to intrusion, vulnerability to failure or degradation, and
implementing remedies spontaneously as needs arise.
A third and much higher level of representation is the ability of a system to express to another
system its nature, interests and capabilities. What is implied here is not simply an indication that
this is a software system written in the Java computer language, supporting the following
interface protocols, and listing explicitly defined capabilities. This kind of explicit introduction is
similar to the directed search capabilities that are offered by the query facilities of any database
management system available today. To fully support the requirements of ‘discovery’ the system
should be able to communicate its nature, interests and capabilities in a conceptual manner. The
analogy in the database domain is a conceptual search capability, where the target of the search
is only vaguely defined as being something like something else and is expected to extend beyond
the boundaries of any particular database or database management system (Pohl et al. 1999, 69-
74). The ability to represent this kind of ‘self-awareness’ in an ontology appears to be well
beyond current knowledge modeling capabilities.

 The Semantic Web Initiative
It is unlikely that anyone predicted in the early 1970s when the Internet first appeared on the
foundations of the ARPANET project funded by the U.S. Department of Defense Advanced
Research Projects Agency (DARPA) that some 30 years later in 2003 the Internet would be used
on a regular basis by more than 600 million people and serve as the preferred medium for close
to (US)$4 trillion in business transactions. However, although the Internet provides almost
instant global connectivity and potential access to an enormous volume of information, all of that
information is stored in a low-level form as data. As a result, even the most powerful search
engines can do little more than pattern-match on keywords as they attempt to retrieve user
requested information. The product of such data searches is typically hundreds of information
source references that may or may not be useful to the human user. The latter may then have to
spend hours reviewing each source to determine whether it is relevant to the purpose of the
search. This was not the intention of the creators of the World Wide Web (Berners-Lee and
Fischetti 1999).
There is a valid concern that the more successful the Internet becomes in providing global
connectivity to millions of users, with a corresponding exponential growth in the availability of
information, the less useful it will become as a source of information. Succinctly stated the
evolution of the Internet, like software systems in general, has been driven by the ability of
computers to rapidly manipulate vast amounts of data without any understanding of the meaning
of the data being processed. The vision of the Semantic Web is intended to overcome this serious
deficiency by making the information on the World Wide Web understandable by computer

26

software. Signs of this vision have become evident with the increasing interest in adding
semantics to data.
The historical development of data manipulation and storage techniques first showed a
preoccupation with efficiency, leading to the deletion of context in favor of the arrangement of
data into neatly packaged records. This appeared to be a perfectly logical approach in line with
the notion that the application, and not the data, is the enabler of the desired functionality.
Accordingly, the data requirements were encapsulated in the application, and even when
programming languages began to acquire object-oriented facilities the more prominent role
assigned to data was largely hidden from the users deep inside the application.
All of this seemed to work quite well until the need for interoperability and the attendant
requirement for the exchange of data among applications surfaced. Two problems were quickly
recognized. First, since each application controlled its own data schema the linking of multiple
applications required application-to-application data mappings that led to hardwired systems. It
soon became apparent that while it was possible to maintain the vertical flow of data within each
of these stovepipe systems, it was inordinately difficult to exchange data horizontally between
stovepipes. The second problem centered on this need for horizontal interoperability: How to
exchange data between two stovepipe systems so that the receiving application will be able to
process the imported data in a useful manner? There appeared to be two possible approaches for
addressing this problem. To explicitly predefine the data exchange format and content, or to add
meaning-identifiers to the data. The first approach, while providing a modest level of
interoperability in the short term, exacerbated the problem in the long term. The hardwired data
bridges were difficult and costly to maintain, provided little (if any) flexibility, and constituted
multiple system failure points. The second approach led to the definition of standard data
exchange protocols that conveyed to the receiving application at least some indication of the
meaning of an imported data package. Of these protocols the Extensible Markup Language
(XML) is rapidly gaining widespread acceptance. XML provides a degree of syntactic
interoperability through nested data record delimiters (i.e., Unicode characters), data meaning-
identifiers (i.e., tags), and links to other resources (i.e., Uniform Resource Identifiers).
Does a protocol like XML convey sufficient meaning to support horizontal interoperability? The
answer is, no. The XML elements that are added to a data exchange package to convey meaning
are of value only if the receiving application understands the name of each element. For
example, the tag name “address” is only useful to the receiving application if it interprets that
name to have the same meaning as the meaning assumed by the sending application (i.e.,
“address” could mean street address, e-mail address, object reference ID, etc.). However, XML
does provide a syntactic foundation layer on which other layers such as the Resource Description
Framework (RDF) can be built. The combination of these layers will serve as the enabling
structure of what is referred to as the Semantic Web.
The vision of the Semantic Web is an information-centric environment in which autonomous
software services with the ability to interpret data imported from other services are able to
combine their abilities to accomplish some useful intent. This intent may range from simply
finding a particular item of information to the more sophisticated tasks of discovering patterns of
data changes, identifying and utilizing previously unknown resources, and providing intelligent
decision-assistance in complex and time-critical problem situations. An example of such an
environment is the TEGRID proof-of-concept system that was first demonstrated by the
Collaborative Agent Design Research Center (CADRC) during an Office of Naval Research

27

Workshop in Washington in September 2002 (Gollery and Pohl 2002). A brief summary of this
demonstration is provided in the following section.

TEGRID: An Experimental Web Services System
The principal components of the TEGRID demonstration are ontology-based Web services that
are capable of seeking and discovering existing Web services, extending their own information
models through the information model of any discovered Web service, and automatically
reasoning about the state of their internal information models. As shown in Figure 14, these
components (referred to as Cyber-Spiders in TEGRID) consist of three principal components: a
Web server; a semantic Web service; and, an information-centric application.
The Web server, utilizing the standard Hypertext Transfer Protocol (HTTP), serves as the
gateway through which the Cyber-Spider gains access to other existing Web services. Existing
Web servers primarily provide access to Hypertext Markup Language (HTML) data sources and
perform only simple operations that enable access to externally programmed functionality.
However, these simple operations currently form the building blocks of the World Wide Web.

 Figure14: Anatomy of a Cyber-Spider Figure 15: Cast of TEGRID players

The second component of a Cyber-Spider is a semantic Web service (i.e., a Web service with an
internal information model). A Web service is accessed through a Web server utilizing standard
protocols (e.g., UDDI, SOAP, WSDL, SML) and is capable of providing programmed
functionality. However, clients to a standard Web service are usually restricted to those services
that implement specific predefined interfaces. The implementation of Web services in the
Internet environment allows organizations to provide access to applications that accept and
return complex objects. Web service standards also include a limited form of registration and
discovery, which provide the ability to ‘advertise’ a set of services in such a way that prospective
client programs can find services that meet their needs. The addition of an internal information

28

model in a semantic Web service allows the storage of semantic level descriptions (i.e.,
information) and the performance of limited operations on these semantic descriptions. In other
words, the semantic Web server component of a Cyber-Spider is capable of reasoning.
The third component of a Cyber-Spider is one or more information-centric applications. These
applications are designed to take advantage of the resources provided by a number of semantic
Web services, enabling them to reason about the usefulness of each service as a core capability
within a more sophisticated set of discovery strategies. Moreover, the application component is
able to construct relationships among the information models of different services, with the
ability to integrate services without requiring agreement on a common information model.
With these three components Cyber-Spiders are at least minimally equipped to operate in an
Internet environment as autonomous software entities, capable of: discovering needed services;
accepting services from external offerers; providing services to external requesters; gaining
context through an internal information model; automatically reasoning about available
information; extending their information model during execution; extending their service
capabilities during execution; and, learning from their collaborations.

The Cast of Players
Based on the scenario described in Figure 15, the TEGRID cast of players includes six semantic
Web services: the Emergency Operations Bureau (EOB) of the Los Angeles Sheriff’s
Department; several Local Sheriff Stations (LSS); a Power Supply Organization (PSO); a Traffic
Control Organization (TCO); several Rapid Response Teams (RRT); and, a Los Angeles County
Web Services Kiosk (WSK).
Fundamental to each player are three notions. First, each player operates as an autonomous entity
within an environment of other players. Most, but not all of the other players are also
autonomous. This requires the autonomous players to be able to discover the capabilities of other
players. Second, each autonomous player has a sense of intent to accomplish one or more
objectives. Such objectives may range from the desire to achieve a goal (e.g., maintain situation
awareness, coordinate the response to a time-critical situation, or undertake a predetermined
course of action following the occurrence of a particular event) to the willingness to provide one
or more services to other players. Third, each player (whether autonomous or not) is willing to at
least cooperate with the other players. In some cases the level of cooperation will extend to a
collaborative partnership in which the partnering players contribute to the accomplishment of a
common objective. In other cases the cooperation may be limited to one player providing a
service to another player, without any understanding or interest in the reason for the service
request.
To operate successfully in such an autonomous Internet-based environment a Cyber-Spider
player should be endowed with the following capabilities:

1. Subscribe to information from external sources (e.g., alerts, ontology extensions).
2. Accept subscriptions from external clients.
3. Dynamically change its subscription profile.
4. Extend its internal information representation.
5. Extend its own service capabilities.
6. Generate new agents for its own use.

29

7. Describe its own service capabilities to external clients.
8. Seek, evaluate and utilize services offered by external clients.
9. Provide services to external clients.

10. Describe its own (intent) nature to external clients.
The Cyber-Spiders in TEGRID are capable of demonstrating eight of these ten desirable
capabilities. The ability of a Cyber-Spider to dynamically change its subscription profile, while
technically a fairly simple matter, was not implemented because it is not used in the
demonstration scenario. The ability of a Cyber-Spider to describe its own nature to external
clients, on the other hand, is technically a much more difficult proposition. It will require a
Cyber-Spider to have an understanding of its personality as a collective product of its internal
information model and the relationship of that model with the external world. At best this must
be considered a challenging research area that is beyond the current capabilities of information-
centric software systems.

The Capabilities
The objective of the TEGRID scenario is to demonstrate the discovery, extensibility,
collaboration, automatic reasoning, and tool creation capabilities of a distributed, just-in-time,
self-configuring, collaborative multi-agent system in which a number of loosely coupled
semantic Web Services associate opportunistically and cooperatively to collectively provide
decision assistance in a crisis management situation. Specifically, these capabilities are defined
as follows:

Discovery: Ability of an executing software entity to orient itself in a virtual cyberspace
environment and discover other software services.
Extensibility: Ability of an executing software entity to extend its information model by
gaining access to portions of the information model of another executing software entity.
Collaboration: Ability of several semantic Web Services to collaboratively assist each
other and human users during time critical decision-making processes.
Reasoning: Ability of a software agent to automatically reason about events in near real-
time under time critical conditions.
Tool Creation: Ability of a semantic Web Service to create an agent to perform
specific situation monitoring and reporting functions.

The reasoning capabilities available in TEGRID are performed by software agents that are
components of the players (i.e., the Cyber-Spiders). In other words, agents are predefined clients
within player systems and perform internal functions that are necessary for the particular player
to deliver its services and/or accomplish its intent. The following agents (i.e., collaborative tools)
are available in the current TEGRID implementation:

Risk Agent: Assists the Emergency Operations Bureau to identify high-risk
entities in the jurisdictional region of an activated Local Sheriff Station.
Deployment Agent: Assists the Emergency Operations Bureau to determine
whether Rapid Response Team support is required for a particular activated Local
Sheriff Station.

30

Power Level Agent: Assists the Power Supply Organization to determine if the
electric power demand has exceeded supply.
Situation Agent: Assists the Emergency Operations Bureau to prepare and
update its Status Report.
Station Monitor Agent: Assists the Emergency Operations Bureau to identify all
Local Sheriff Stations that will experience power blackouts during the current and
next blackout cycle.
Status Agent: Assists a Local Sheriff Station to prepare and update its Situation
Status Report.
Local Station Agent: Assists a Local Sheriff Station to determine whether
sufficient local resources are available to deal with current conditions.
Scheduling Agent: Assists the Emergency Operations Bureau to assign Rapid
Response Teams and equipment to situations requiring their involvement.
Incident Agent: Assists the Emergency Operations Bureau to monitor the
response to a particular situation supported by one or more of its Rapid Response
Teams.
Routing Agent: Assists the Traffic Control Center to determine alternative routes
to a particular situation location.

Demonstration Summary
Since the complete TEGRID demonstration scenario has been described elsewhere (Gollery and
Pohl 2002) it will suffice here to summarize some typical events and automated reactions.

 Figure 16: Orientation and discovery Figure 17: Information subscription

31

Orientation: The players orient themselves by accessing one or more directories of
available services and registering an information subscription profile with those services
that they believe to be related to their intent (Figure 16).
Subscription: The players access the services that they require to achieve their intent,
register appropriate subscription profiles, and query for information that they believe to
have a need for (Figure 17). For example, the Emergency Operations Bureau registers a
subscription profile with each Local Sheriff Station, which includes all current police unit
locations, mission completion events, new mission events, and any information changes
relating to the availability of its Rapid Response Teams. Then queries each Local Sheriff
Station for all information relating to its Rapid Response Teams and extends its
information model. Finally, registers subscription profiles with each Rapid Response
Team, the Power Supply Organization, and the Traffic Control Organization.
Collaboration: The Power Supply Organization first alerts its subscribers that a rolling
power blackout condition is imminent (i.e., will commence per predefined schedule
within 15 minutes) and subsequently alerts its subscribers that the rolling power blackout
has commenced. The Emergency Operations Bureau (EOB) utilizes its Situation Agent to
prepare the first version of the ‘EOB Situation Status Report’. Then alerts all Local
Sheriff Stations, in whose jurisdictions the next scheduled set of blackouts will occur, to
prepare for potential deployment. And, finally, warns the Rapid Response Teams
assigned to assist the Local Sheriff Stations in whose jurisdictions the next set of
blackouts are scheduled to occur, to prepare for potential deployment. Consequently, all
activated Local Sheriff Stations utilize their Status Agents to prepare the first version of
their ‘Situation Status Reports’, the Local Sheriff Stations in whose jurisdiction the next
set of blackouts is scheduled to occur, prepare for deployment.

Demonstration Results
The objectives of the TEGRID project were three-fold. First, to explore the primary capabilities
that would be required of semantic Web services operating as largely autonomous decision-
support components in a self-configuring, just-in-time, intelligent decision-assistance toolkit of
collaborating software agents. Second, to determine if the currently available information-
centric software technology could support at least basic (i.e., meaningful and useful)
implementations of these required capabilities. And, third, to build a working experimental
system that could serve as a test-bed for longer term research studies focused on the behavioral
characteristics of self-configuring intelligent systems in general, and the ability of such systems
to deal with specific kinds of dynamic and complex problem situations.
The demonstration showed that, today at a base level of functionality and in the near future at a
much more sophisticated level, a Semantic Web environment will be able to support semantic
Web services with the ability to: discover desired existing external services; accept and utilize
services from external offerers; provide services to external requesters; gain understanding
through the context provided by an internal information model; automatically reason about
available information within the context of the internal information model; extend the internal
information model during execution; spontaneously generate new agents during execution as the
need for new capabilities arises; and, learn from the collaborations that occur within the
cyberspace environment.

32

References
Berners-Lee T. and M. Fischetti (1999); ‘Weaving the Web: The Original Design and Ultimate Destiny of the World
Wide Web by its Inventor’; Harper, San Francisco, California.

Cass S. (2004); ‘A Fountain of Knowledge’; IEEE Spectrum (www.spectrum.ieee), Jan.30.

Dreyfuss H. (1979); ‘What Computers Can’t Do: The Limits of Artificial Intelligence’; Harper and Rowe, New
York, New York.

Deyfuss H. and S. Dreyfuss (1986); ‘ Mind Over Machine: The Power of Human Intuitive Expertise in the Era of
the Computer’; Free Press, New York, New York.

Dreyfuss H. (1997); ‘What Computers Still Can’t Do: A Critique of Artificial Reason’; MIT Press, Cambridge,
Massachusetts.

Fellbaum C. (1998); ‘WordNet, An Electronic Lexical Database’; MIT Press, Cambridge, Massachusetts.

Ganek A. and T. Corbi (2003); ‘The Dawning of the Autonomic Computing Era’; IBM Systems Journal, 42(1)
(pp.5-18).

Gollery S. and J. Pohl (2002); ‘The TEGRID Semantic Web Application: A Demonstration System with Discovery,
Reasoning and Learning Capabilities’; Office of Naval Research (ONR) Workshop Series on Collaborative
Decision-Support Systems, hosted by the Collaborative Agent Design Research Center (CADRC) of Cal Poly (San
Luis Obispo) in Quantico, VA, September 18-19.

Horn P. (2001); ‘Autonomic Computing: IBM’s Perspective on the State of Information Technology’; IBM
Corporation, October 15 (www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf).

Lucas J. (1961); ‘Minds, Machines and Goedel’; Philosophy, 36 (pp. 120-4).

Patterson D., A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiziman, M.
Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman and N. Treuhaft (2002); ‘Recovery-Oriented
Computing (ROC): Motivation, Definition, Techniques, and Case Studies’; UC Berkeley, Computer Science
Technical Report (UCB//CSD-02-1175), University of California, Berkeley, California, March 15, 2002.

Pedersen T. and R. Bruce (1998); ‘Knowledge Lean Word-Sense Disambiguitization’; Proceedings 5th National
Conference on Artificial Intelligence, July, Madison Wisconsin.

Pohl J. (1998); ‘The Future of Computing: Cyberspace’; in Pohl J. (ed.) Advances in Collaborative Decision-
Support Systems for Design, Planning, and Execution, focus symposium: International Conference on Systems
Research, Informatics and Cybernetics, Baden-Baden, Germany, August 17-21 (pp.9-28).

Pohl J., A. Chapman, K. Pohl, J. Primrose and A. Wozniak (1999); 'Decision-Support Systems: Notions, Prototypes,
and In-Use Applications'; Technical Report, CADRU-11-97, CAD Research Center, Design Institute, College of
Architecture and Environmental Design, Cal Poly, San Luis Obispo, CA, January, 1997, reprinted July 1999 (pp.69-
74).

Pohl J., M. Porczak, K.J. Pohl, R. Leighton, H. Assal, A. Davis, L. Vempati and A. Wood, and T. McVittie, and K.
Houshmand (2001); ‘IMMACCS: A Multi-Agent Decision-Support System’; Technical Report, CADRU-14-01,
Collaborative Agent Design (CAD) Research Center, Cal Poly, San Luis Obispo, CA. (2nd Edition)

Random (1999); ‘Random House Webster’s College Dictionary’; Random House, New York, New York.

Searle J. (1980); ‘Mind, Brains and Programs’; The Behavioral and Brain Sciences, 3 (pp. 417-24).

33

Searle J. (1992); ‘The Rediscovery of the Mind’; MIT Press, Cambridge, Massachusetts.

Wooldridge M. and N. Jennings (1995); ‘Intelligent Agents: Theory and Practice’; The Knowledge Engineering
Review, 10(2) (pp.115-152).

Semantic Web Bibliography
Berners-Lee T. (2002); ‘Weaving the Web’; Harper, San Francisco, California.

Berners-Lee T. (2004); ‘What the Semantic Web Can Represent’;
(www.w3.org/DesignIssues/RDFnot.html)

Berners-Lee T., J. Hendler and O. Lassila (2001); ‘The Semantic Web’; Scientific American, May
(www.scientificamerican.com/2001/0501issue/0501berners-lee.html)

Brickley D. and R. Guha (eds.) (2002); ‘RDF Vocabulary Description Language 1.0: RDF Schema’; W3C Working
Draft, April 30 (www.w3.org/TR/rdf-schema/)

Business Week (2002); ‘The Web Weaver Looks Forward’; Interview with TIM Berners-Lee, March 27
(www.businessweek.com/bwdaily/dnflash/mar2002/nf20020327_4579.htm)

Carroll J. and J. De Roo (eds.) (2002); ‘Web Ontology Language (OWL) Test Cases’; W3C Working Draft, October
24 (www.w3.org/TR/2002/WD-owl-test-20021024/)

Casey M. and M. Austin (2001); ‘Semantic Web Methodologies for Spatial Decision Support’; Institute for Systems
Research and Department of Civil and Environmental Engineering, University of Maryland, November.

Cohen P., R. Schrag, E. Jones, A. Pease, A. Lin, B. Starr, D. Easter, D. Gunning and M. Burke (1998); ‘The
DARPA High Performance Knowledge Bases Project’; Artificial Intelligence Magazine 19(4) (pp.25-49)
(reliant.teknowledge.com/HPKB/Publications/AImag.pdf)

DAML-ONT (2000); (www.daml.org/2000/10/daml-ont.html)

DAML+OIL (2001); (www.daml.org/2001/03/reference.html)

DAML-S (2002); (www.daml.org/services/daml-s/0.7/)

Dean M., D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneider, F. Stein and
L. Stein ((eds.) (2002); ‘OWL Web Ontology Language 1.0 Reference’; W3C Working Draft 29, July and
November 12 (www.w3.org/TR/owl-ref/)

Daconta M., L. Obrst and K. Smith (2003); ‘The Semantic Web: A Guide to the Future of XML, Web Services, and
Knowledge Management’; Wiley, Indianapolis, Indiana.

Ewalt D. (2002); ‘The Next Web’; Information Week, October
(www.informationweek.com/story/IWK20021010S0016)

Fikes R. and D. McGuinness (2001); ‘An Axiomatic Semantics for RDF, RDF Schema and DAML+OIL’; KSL
Technical Report (KSL-01-01), October
(www.ksl.stanford.edu/people/dlm/daml-semantics/abstract-axiomatic-semantics.html)

Garshol L. and G. Moore (eds.) (2002); ‘The XML Topic Maps (XTM) Syntax’; JTC1/SC34:ISO 13250, July 22
(www.y12.doe.gov/sgml/sc34/document/0328.htm)

Gil Y. and V. Ratnakar (2002); ‘Markup Languages: Comparison and Examples’; Information Sciences Institute,
University of Southern California, TRELLIS project

34

(www.isi.edu/expect/web/semanticweb/comparison.html)

Heflin J., R. Volz and J. Dale (eds.) (2002); ‘Requirements for a Web Ontology Language’; W3C Working Draft,
July 8 (www.w3.org/TR/webont-req)
Hendler J., T. Berners-Lee and E. Miller (2002); ‘Integrating Applications on the Semantic Web’; Journal of the
Institute of Electrical Engineers of Japan, 122(10), October (pp.676-680).

Horrocks I. (2002); ‘DAML+OIL: A Description Language for the Semantic Web’; IEEE Intelligent Systems,
Trends and Controversies.

Manola F. and E. Miller (eds.) (2002); ‘RDF Primer’; W3C Working Draft, March 19 (www.w3.org/TR/2002/WD-
rdf-primer-20020319/)

OIL (2004); (www.ontoknowledge.org/oil/)

Ontolingua (2004); (www.ksl.stanford.edu/software/ontolingua/)

OWL (2001); ‘The Web Ontology Language’; (www.w3.org/2001/sw/WebOnt/)

Patel-Schneider P., I. Horrocks, P. Payes and F, van Harmelen (eds.) (2002); ‘Web Ontology Language (OWL)
Abstract Syntax and Semantics’; W3C Working Draft, November 8
(www.w3.org/TR/2002/WD-owl-semantics-20021108/)

Swartz A. (2002); ‘The Semantic Web in Breadth’; (logicerror.com/semanticWeb-long)

W3C (1999); ‘Resource Description Framework (RDF) Model and Syntax Specification’; W3C Recommendation,
February 22.

W3C (2001); ‘XML Linking Language (Xlink) Version 1.0’; W3C Recommendation, June 27
(www.w3.org/TR/xlink/)

W3C (2003); ‘Design Issues’; (www.w3.org/DesignIssues/diagrams/sw-stack-2002.png)

35

Approaching Semantic Interoperability:
A Multi-Agent Observation-Based Communication Framework

Adam Gray
ARES Agent Team Leader

CDM Technologies, Inc
San Luis Obispo, CA
adgray@cdmtech.com

Abstract
Multi-agent architectures, abstractions in which multiple autonomous processes
collaborate to solve a problem, are an attractive approach to dealing with complex
problems that require multiple factors to be considered simultaneously. This approach
can be even more effective when humans are treated as additional agents that provide
supplemental knowledge and common sense. However, such systems face considerable
obstacles in providing a communication framework that allows interoperability between
agents, both human and software, that possess ontologies representing significantly
different views of the world. The problem is compounded further by the need to share
information among agents that is often uncertain, incomplete and may even be
conflicting. Current agent communication languages, such as Knowledge Query and
Manipulation Language (KQML) and Foundation for Intelligent Physical Agents - Agent
Communication Language (FIPA-ACL), support standardized syntactic interoperability
among agents without restricting the language or ontology used. However, there is a
need for a framework that promotes semantic interoperability, particularly in the context
of handling uncertain communication and establishing the ontology overlap necessary for
mutual agent understanding. This paper utilizes the design and implementation of the
Mission Readiness Assessment System, a multi-agent decision-support system developed
for the US Navy and sponsored by the Office of Naval Research, to explore the use of an
observation-based communication framework that addresses semantic interoperability
among agents.

Keywords
multi-agent system; decision-support system; observation-based communication; agent
communication language; ontology

Introduction
The ability of the human mind to solve large, complex problems is often insufficient
compared to that required for effective problem solving. The main difficulties in this
regard revolve around the idea of bounded rationality, the theory of which expounds that
decision makers exhibit rationality over only a subset of a problem space. Many
problems appear overly difficult either because the problem-solver cannot contemplate all
aspects of the problem at once or because the problem-solver lacks expertise necessary to
address certain aspects of the problem. (Bird and Kasper 1996) Furthermore, problems in
which decisions in a single area tend to influence many others, and therefore require
multiple factors to be considered simultaneously, conflict with the sequential-based

36

human cognitive process. (Myers and Pohl 1995) Hence, the rationally bounded nature
of the human mind leads to the limiting of human problem-solvers to a narrow domain,
often restricting classes of problems in which no individual aspect is particularly
complex. These limitations have generally been approached by human problem-solvers
through the collaboration of multiple people possessing expertise in diverse domains.
Numerous examples of these collaborative teams exist with real-world examples such as
committees, boards and even software development teams. (Myers and Pohl 1995)

Multi-agent systems are an emerging software-building paradigm that attempts to deal
with inherent problem-solving difficulties by modeling the characteristics of a human
problem-solving team. These systems introduce a powerful abstraction in which a
software agent is an autonomous goal-directed process that is capable of performing
actions, is situated in, is aware of and reacts to its environment, and cooperates with other
agents to accomplish its tasks. (Finin et al. 1995) Such applications have been shown to
be especially effective in dealing with problems in which multiple factors need to be
considered simultaneously, different types of expertise are required and dynamic changes
occur in the solution strategies. (Myers and Pohl 1995)

While, automated systems have shown the ability to outperform humans in both dealing
with large amounts of information and handling concurrent problem aspects, humans still
possess a significant advantage in, among other things, applying common sense to
unexpected situations and developing dynamic solution strategies. Thus, the multi-agent
abstraction can become even more powerful by treating humans as additional agents
capable of providing common sense and guidance to the software agents. (Myers and
Pohl 1995) Systems in which this strategy is employed, popularly called decision-
support systems, are buoyed further by the fact that human decision makers are much
more likely to accept conclusions made by a software system if they are actively involved
in the decision-making process.

In order for agents to engage in useful decision-making there must exist a representation
of the concepts, and relationships between those concepts, inherent within the problem
domain. These representations, popularly referred to as ontologies, facilitate an
understanding of the problem domain by the agent that is required for utilization of the
agent’s reasoning capabilities. However, a number of difficulties exist in the
establishment of this representation for multi-agent systems. Similar to how human
collaborative teams need an overlap of knowledge large enough to allow sufficient
interaction of ideas, collaborative agents require sufficient ontology overlap to allow
mutual understanding. Unfortunately, in direct opposition to this need is the desire to
keep agents sufficiently independent to allow unique contribution. Furthermore, large
overlap between agent ontologies requires a greater number of domains be encompassed
by an individual ontology, tending to result in ontologies comprised of generalities.
These generalities lead to domain representations that, while partially acceptable to all,
are not ideal for any individual agent. (Pohl K. 2001) Thus it becomes extremely
important for an agent communication framework to allow, and simplify the process of
determining, the ontological overlap sufficient to support the required collaboration
among agents.

37

It is also important to note that in any but the simplest of examples, human collaborative
teams are required to make assertions without complete information and with less than
one hundred percent accuracy. Not surprisingly, computer systems that model this
collaboration must deal with similar constraints. In fact, agents within a multi-agent
system must not only deal with communication that can be uncertain, incomplete or even
conflicting, but a framework must exist that allows for the combining of redundant
observations and for the determination of their relative reliability.

Current Agent Communication Languages
Much of the research in agent communication languages (ACLs) has revolved around the
idea of speech act theory, in which not just the information content is communicated but
also the attitude behind that content (i.e. assertion, request, query, etc…). (Finin et al.
1999) This paper focuses on two of the most well known of these ACLs, KQML and its
descendent FIPA-ACL. These languages possess a syntax that allows information
passing between agents entirely independent of both the content’s language used and the
underlying ontology for the content.

KQML was conceived as both a message format and a message-handling protocol to
support runtime knowledge sharing among agents. The key features of KQML can be
summarized as follows:

• KQML messages are opaque to the content they carry and do not merely
communicate sentences in some language, but rather communicate an attitude
about the content.

• The language’s primitives are called performatives and, as the term suggests, the
concept is related to speech act theory. These performatives define the
permissible actions that agents may attempt in communicating with each other.
(Finin et al. 1995)

The syntax of KQML is based on a balanced parenthesis list. The initial element of the
list is the performative and the remaining elements are keyword/value pairs. Figure 1
shows a KQML message from agent joe that represents a query about the price share of
IBM stock and the resulting response from the stock-server agent. As can be seen in this
exchange the content structure, language and ontology are entirely independent of the
KQML language.

The Foundation for Intelligent Physical Agents (FIPA) is a non-profit association
registered in Geneva, Switzerland. Its stated purpose is to promote the success of
emerging agent-based applications, services and equipments. The FIPA-ACL is the
agent communication language created by FIPA for systems that incorporate the FIPA
standard. (Suguri 1999) The syntax of this language is based closely on KQML and the
differences between the two are insignificant for the purposes of this paper.

The main advantage of both KQML and FIPA-ACL is that they promote standardized
agent communication in the least restrictive way possible. The ontology and content

38

language used in this communication is immaterial to the syntax. The use of
performatives to express the attitude behind communication also allows a degree of
understanding between agents not easily supported with content alone.

(ask-one
:sender joe
:content (PRICE IBM ?price)
:receiver stock-server
:reply-with ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

(tell
:sender stock-server
:receiver joe
:in-reply-to ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

Figure 1 - Example KQML Agent Exchange

By putting no restrictions on the content language or content ontology used in agent
communication, these languages provide syntactic interoperability between agents;
however, they do not address the larger problem of semantic interoperability. This
includes the need for a framework that helps in the handling of uncertain communication
and the establishing of the ontological overlap necessary for mutual agent understanding.

Observation-Based Communication Framework
This paper proposes a framework for addressing vital aspects of semantic operability
between agents. It is based on the Integrated Cooperative Decision Model (ICDM)
development framework which consists of an underlying architecture, fundamental
design criteria, and development tools and processes for creating agent-based decision-
support systems. (Pohl 2002) The underlying architecture provides a set of high-level
application-independent subsystems and the mechanisms to support collaborative
interaction among them. These generic subsystems can be quickly tailored to produce an
application specific architecture and implementation utilizing the ICDM development
tools. The initial development of ICDM was undertaken by the Collaborative Agent
Design Research Center (CADRC) at California Polytechnic State University, San Luis
Obispo. Based on a three-tier architecture, ICDM incorporates technologies, such as
distributed-object servers and inference engines, to provide a collaborative environment
for agent-based decision-support systems that provides both developmental efficiency
and architectural extensibility.

Observation-Based Communication
The proposed framework employs observation-based inference, a paradigm that entails
the representation of the majority of operational information, including all agent

39

communication, within the system as observations. This greatly reduces the required
ontology overlap and simplifies the information passing process. Each observation has a
knowledge-level concept and the relationships between these concepts form the basis for
agent inference. Agent rules look for generic patterns between concepts and infer new
observations based on logical (and, or) patterns between them. This allows users of the
system, or agents within the system, to dynamically add concepts and concept
relationships. The ability for an agent to dynamically modify its own knowledge
structure also provides an important foundation for learning. (Gray 2003)

The observation ontology fragment shown in Figure 2 is a simplified version of the only
ontology piece that agents are required to share in order to communicate within the
framework. It implements the knowledge level approach to developing intelligent
information systems utilizing an abstract, domain independent, statically compiled
ontology divided into two distinct levels. The operational level provides classes to serve
as templates for creating object instances that record the day-to-day events within the
domain. The knowledge level provides classes to serve as templates for creating object
instances to record domain specific concepts, their relationships and knowledge of their
application. This approach provides support for the powerful modeling concepts of
dynamic and multiple classification and allows for the development of generic statically
compiled ontologies that can be reused across multiple disparate domains. (Zang 2003)

The observation ontology fragment possesses a creator attribute specifying the human or
software agent who made the observation along with a degree of belief attribute
specifying the agent’s level of confidence in that observation. The degree of belief
attribute is crucial both for supporting uncertain communication as well as allowing
probabilistic inferences of new observations. An evidence association is also included to
allow specification of the past observations used by the agent in inferring a new one. The
individual degrees of belief of an inferred observation’s evidential observations is crucial
for the agent in determining the degree of belief it assigns to the inferred observation.

An observation also includes a postedStartTime attribute that is critical for both the
observation’s temporal nature and the fact observations cannot be modified after
conception. This allows a complete record of the history of agent communication and
allows straightforward exploration of an agent’s past states of belief. The ability to
preserve the integrity of past observations, despite changes to the observational state of
the system, is achieved by supporting the creation of new observations about old ones.
For example, if an agent within a medical system makes an observation with a very high
degree of belief that a person has a particular disease, and then a test is completed that
contradicts this assertion, the agent simply makes a new observation on the old one
stating that it is not valid. Observations that led the agent to this determination of validity
are then associated as evidence to the new observation.

The Blackboard Pattern
The Blackboard Pattern best describes the top-level underpinnings of the ICDM
architecture, and consequently the agent communication framework. This classical
architectural pattern has been employed by the artificial intelligence (AI) community

40

since the early 1970’s as an approach to problems for which no deterministic solution
strategies are known. The name blackboard was chosen because the approach parallels
the situation in which human experts sit in front of a real blackboard and work together to
solve a problem. (Zang 2001) As this approach is very similar to that used by human
collaborative teams, it is a very attractive architecture for agent-based systems that strive
to model this same sort of collaboration.

Figure 2 – Operational and Knowledge Observation Ontology Fragments

The Blackboard architecture, shown in Figure 3, employs a collection of independent
programs, or agents, that work cooperatively on a common data structure, or blackboard.
Each program is specialized for solving a particular part of the overall task, and all
programs work together on the solution. The specialized programs are completely
independent of each other and do not interact directly; this removes the many
complexities inherent in one-on-one agent conversations. An observation made by an

41

agent is immediately accessible by all other agents who understand the context of that
observation. This greatly reduces the size of ontology overlap required for agent
communication as, rather then needing to share an entire ontological fragment as in the
FIPA-ACL, agents only need include ontological fragments useful to their decision
process.

Human Agent

Object Server
(Blackboard)

Human Agent

Data Store

Software
Agent

Software
Agent

Software
Agent

Software
Agent

Figure 3 - Blackboard Architecture

Bayesian Networks
The proposed communication framework uses Bayesian networks to represent
probabilistic relationships between concepts. This allows an agent to make probability-
based inferences of new observations using uncertain observations made by other agents.
A Bayesian network, or belief network, is a causal graph, associated with an underlying
distribution of probability (Russel and Norvig 2003). Each leaf node within the graph
contains a prior probability table and all other nodes contain a conditional probability
table relating it to connected nodes (Figure 4). This representation expresses all the
information contained within a joint probability distribution in a much more concise
format. The inherent advantage of these graphs is that the probability of any given output
variable can be determined without knowledge of all input variables.

An agent’s concept hierarchy is modeled as a Bayesian network through a Concept
object’s association to a ConceptType and a ConceptSet (Figure 2). The ConceptType
object holds the question a Concept answers and the Concept object contains an answer
string specifying what the answer to that question is. For example, if a given Concept
specifies that a patient has the flu, then its ConceptType’s question would be “Does the

42

patient have the flu?” and the Concept’s answer would be “yes”. The Concept object is
also associated to a number of ConceptSet objects as either a source or a result. These
associations allow creation of a Bayesian network structure in which the probability of
each result’s truth is specified by the probabilities of truth of its supporting concepts. The
InstanceCount attribute specifies how many times in the past an observation has been
made for that Concept. Thus the Bayesian network probabilities can be dynamically
improved by updating a Concept’s InstanceCount attribute to coincide with the system’s
state. This dynamic recalculation of probabilities allows an intuitive and computationally
sound vision of learning. (Gray 2003) Another advantage of using Bayesian network
technology is that past operational data can be more easily incorporated into the
knowledge base as the network probabilities can be determined by a combination of prior
data and/or human prediction.

Burglary Earthquake

Alarm

John Calls MaryCalls

P(B)

.001

P(E)

.002

B E P(A)

T

T

F

F

T .95

F .95

T .29

F .001

A P(J)

T

F

.90

.05

A P(M)

T

F

.70

.01

Figure 4 - A typical belief network with conditional probabilities.

Implementing Bayesian networks for use by agents within such systems has some
inherent difficulties. A conditional probability table is difficult to model in an object-
based format without necessitating a large number of objects. This is especially the case
in belief networks with probability nodes influenced by more than two other nodes or that
contain probability nodes with more than two variables. The number of objects necessary
to represent a Bayesian network is on the order of)*(kvnQ where n is the number of
nodes, v is the number of variables per node and k is the number of nodes that directly
influence each other node. As there is an exponential relationship between the number of
necessary objects and the number of nodes directly influencing each other node, the
number of objects can become large very quickly. However, this representation is
significantly more efficient than the use of a full joint probability distribution. Consider a
network with 20 nodes)20(=n , 5 parents per node)5(=k and 2 Boolean variables

43

)2(=v , the Bayesian network requires approximately 640 nodes while the full joint
probability distribution requires over a million nodes. (Gray 2003)

Case-Based Reasoning
The employment of humans as additional agents within the decision-support paradigm
introduces a number of complexities. At the forefront is the need to allow
communication between software agents and human domain experts whose
representations of the world are significantly different. The proposed agent
communication framework employs Taxanomic Case-Based Reasoning System (TCRS)
v1.0, a taxonomical conversational case-based reasoning system developed at the Naval
Research Laboratory. (Aha and Gupta 2002) TCRS supports problem solving by
recalling and applying past experiences, or cases, that are similar to the problem at hand.
This allows a user to incrementally specify a query by providing text annotations and
answering prompted questions. This query is combined with the answers to relevant
questions and the result is matched against previous cases to determine the most similar
past experience. Therefore, this tool allows a software agent to determine the objectified
phenomenon most similar to that which a domain expert wishes to express by analyzing
the domain expert’s textual description and his answers to a number of relevant
questions.

The similarity measure used by TCRS to determine the correlation between two text
strings is calculated using the different trigrams present in the two strings. This
calculation can be seen in Figure 5 where tri(x) is the set of trigrams in x. For example,
tri(eloquent) = {elo, loq, oqu, que, ent}.

|)()(|* 2|)(||)(|11),(ytrixtriytrixtriyxsim «-++=

Figure 5 - Similarity measure between two text strings x and y

TCRS also features taxonomical relationships between past cases to help handle
abstraction difficulties inherent in phenomenon correlation. For example, the
phenomenon displayed in Figure 6 would be represented in a hierarchical structure of
cases within TCRS. This makes the case representation more efficient as it is indexed by
fewer and only the most specific question-answer pairs available at the time of indexing.
It also eliminates any unwanted correlation among features that could result from
inherent abstraction. Lastly, it makes the conversation responsive to the level of
abstraction in a user’s query. This allows a correlation between the user’s level of
expertise in a particular domain and the level of detail in a case hierarchy.

(1.) The weather was bad
 (1.1) The weather was stormy
 (1.1.1) The wind speed was very high
 (1.1.1.1) The wind speed was over 90 mi./hr

Figure 6 - Phenomenon Taxonomy

44

Conflict Resolution Agent
The framework employs an autonomous, distinct Conflict Resolution Agent to assist in
dealing with observations that are conflicting, supporting or redundant. When
observations are found to be conflicting, the agent uses past reliability statistics on the
observations’ sources, the observations’ relevance to the problem and the observations’
times of conception to determine the one that it believes to be the most reliable. A ‘No
longer valid’ observation is then posted by the Conflict Resolution Agent on the
observations that were not chosen. By implementing conflict resolution in this fashion
the option is afforded to all agents to either take the advice of the Conflict Resolution
Agent or act on their own accord. Reliability statistics used in this analysis can be
updated dynamically as determinations are made about an observation’s validity,
allowing the combination of real-time and historical data to improve the conflict
resolution performance.

The Conflict Resolution Agent deals with supporting observations by inferring a single
top-level observation with a combined degree of belief. The supporting observations
used to create the new observation are associated as evidence. This reduces the number
of observations an agent must process without altering or removing existing information.

Similarly, the agent deals with redundant observations by creating a top-level observation
tying those observations together. The new observation is given a degree of belief
befitting the combined information. This provides straightforward notification to other
agents that they need not process each of the redundant observations without restricting
their ability to access them.

Mission Readiness Assessment System
The Mission Readiness Assessment System (MRAS) is an idea developed by Dr. Philip
Abraham at the Office of Naval Research and manifested into a funded project as an
analysis of logistic related decisions afloat and a demonstration of decision support
systems and agent based software for enhancing ship readiness. It represents a decision
aid for a ship’s commanding officer and senior enlisted personnel. Specifically, the
system:

• Provides agent based shipboard decision support to the commanding officer and
senior enlisted personnel.

• Allows shipboard users to view and develop the operational schedule and relate
tasks to their necessary resources.

• Provides shipboard users with agent generated alerts and change notifications in
response to changes in the readiness status.

• Allows shipboard users to customize and extend status reporting features and
mechanisms.

• Integrates with existing shipboard information, control, and monitoring systems.

Top-level Mission Readiness assessments are presented with symbols providing
immediate visibility of a ships readiness status biased by mission type. The possible
status levels include:

45

• Fully Mission Capable - All major equipment and systems are fully capable of
performing all required functions without reservations.

• Mission Capable – All major equipment and systems are capable of performing
all required functions with some reservations.

• Marginally Mission Capable – All major equipment and systems are capable of
performing all required functions with major reservations.

• Not Mission Capable in Selected Areas – Capable of performing selected major
functions in a primary mission area.

• Not Mission Capable – Major discrepancies exist in one or more key functional
areas, making the ship incapable of accomplishing a primary mission.

The user interface for MRAS can be seen in Figure 7. The top panel displays the current
readiness of the ship for such distinct missions as: Amphibious Warfare, Medical Support
and Self Defense. The right-hand side panels shows varying levels of the equipment
hierarchy for each of the above missions. The left-hand side panel displays agents
employed by the system including: Mission Readiness Assessment Agent, Interface
Agent, Personnel Agent, Combat Systems Agent and Supply Agent. These agent icons
are highlighted with yellow if they contain a current warning for the user and red if they
contain a violation. The middle panel shows a graphical display of the ship with problem
areas highlighted in red.

The observation-based communication framework detailed in this paper is used
extensively within MRAS to support communication between agents, both human and
software. Software agents within the system use the observation ontology fragment and
all information passing between those agents is accomplished through the posting of
observations to the blackboard. The two most prominent agents are the Equipment Status
Agent, which processes inputs from outside sources, translates them to equipment level
assessments and propagates those assessments up the equipment hierarchy, and the
Mission Readiness Assessment Agent which infers mission level assessments from thes
status of relevant equipment. User observations can be made through the use of the case-
based reasoning tool TCRS and the Conflict Resolution Agent is used to handle
conflicting, supporting and redundant observations.

The concept hierarchy used within MRAS varies depending on the class of the target
ship, however the basic structure consists of the phenomenon that affect the ship’s overall
mission readiness and are associated using the Bayesian network structure detailed
earlier. Use of this structure, along with the ability to specify an observation’s degree of
belief, allows the utilization of uncertain observations and the probabilistic inference of
additional observations. This is particularly important within MRAS as situations are
often faced in which determination of the exact problem causing equipment degradation
is not possible.

46

Figure 7 - SILS MRAT User Interface

TCRS is employed by MRAS to allow a user to express a phenomenon about a specific
ship subsystem to the software agents. As it is not feasible for the user to search through
a list of all possible phenomenon understood by the software agents, the tool allows the
user to communicate by entering a textual description of the phenomenon. TCRS then
presents the user a ranked list of the phenomenon it believes are most similar to the
provided description along with a list of questions it believes will help improve the
accuracy of that ranking. The user may choose the most similar phenomenon from the
list or answer any number of the presented questions to further improve the list’s
accuracy.

The Conflict Resolution Agent also plays a vital role within MRAS. Assessment values
are given to equipment on the ship and these values are propagated by MRAS up the tree
to the mission level. As assessments are often made by multiple agents on overlapping
pieces of the tree, conflicting assessment values for the same node are common. The
Conflict Resolution Agent uses source reliability statistics, relevance and the
observation’s time of conception to determine which of the conflicting assessments to
accept.

The majority of difficulties observed in the utilization of the proposed agent
communication framework within the context of MRAS revolve around performance.

47

Bayesian network technologies have existed for many years, yet few fielded systems
using the technology exist. This is due primarily to the large number of objects required
for modeling any but the simplest of belief networks. As computing power has increased,
Bayesian network technology has become increasingly more viable, yet, given the size of
the network required for MRAS to be fielded on a naval vessel, the use of the technology
is still a significant bottleneck.

The use of static observations for communication has also hindered the overall
performance of MRAS. As observations within MRAS do not change after their initial
inception, the number of observations within the system can quickly reach very large
numbers leaving a considerable memory footprint. While partitioning the system’s
operational data between multiple sessions has helped reduce this overhead it is still a
noteworthy constraint.

Conclusion
In recent years, multi-agent architectures have proved to be a powerful abstraction for
modeling the decision making process of a human collaborative team. Such applications
are especially effective in dealing with problems in which multiple factors need to be
considered simultaneously and multiple types of solution strategies need to be employed.
The use of humans as additional agents capable of providing commons sense and
overarching authority has further increased their effectiveness. However, a number of
difficulties exist in the implementation of these systems. While the differing viewpoints
of collaborating agents is one of the major strengths of multi-agent systems, these
differing viewpoints are also one of the most significant impedances in allowing agent
collaboration. This is due to not only to the difficulty of determining the ideal agent
ontology overlap but also to the need to allow uncertain communication between the
agents.

This paper has proposed an observation-based multi-agent communication framework to
deal with the semantic interoperability aspects of agent communication not addressed by
current agent communication languages. The framework uses observation-based
communication to help deal with the determination of the ideal ontology overlap and uses
Bayesian networks, case-based reasoning and conflict resolution technologies to support
uncertain communication.

The Mission Readiness Assessment System, a decision-support system sponsored by the
Office of Naval Research, implements the proposed agent communication framework.
Its implementation has allowed the expression of uncertainty in ship system assessments
as well as the representation of probabilistic relationships between assessment
phenomenon. However, the system has been forced to cope with performance overhead
the framework introduces through its use of Bayesian network technology and static
treatment of observations. Improvements in the algorithms used as well as advancements
in computing power in the upcoming years should help ease these concerns as use of the
framework in a fielded system approaches fruition.

48

References
Aha, David W. and Gupta, Kalyan Moy (2002); “Causal Query Elaboration in
Conversational Case-Based Reasoning”; Proceedings of FLAIRS 2002.

Bird, Shaun D. George M. Kasper (1996); “Modeling Belief and Preferences in Multi-
Agent Systems”; Proceedings of the 29th Annual Hawaii International Conference on
System Sciences 1996.

Finin, Tim. Yannis Labrou. James Mayfield (1995); “KQML as an agent communication
language”; September 1995.

Finin, Tim. Yannis Labrou. Yun Peng (1999); “The Interoperability Problem: Bringing
together Mobile Agents and Agent Communication Languages”; Proceedings of the
32nd Hawaii International Conference on System Sciences 1999.

Fowler, Martin (1997); “Analysis Patterns, Reusable Object Models”; Addison-Wesley
Longman 1997.

Gray, Adam (2003); “ARES Agent Technology Overview”; Office of Naval Research
Proceedings, 2003.

Myers, Leonard. Jens Pohl (1995); “ICDM: Integrated Cooperative Decision Making –
In Practice”; 6th IEEE Conference, New Orleans, July 1995.

Nickles, Matthias (2003); “An Observation-based Approach to the Semantics of Agent
Communication”; Research Report FKI-24x-03, AI/Cognition Group, Technical
University of Munich 2003.

Pohl, Kym (1998); “The Round Table Model: A Web-Oriented, Agent-Based Approach
To Decision-Support Applications”; InterSymp-98 Conference Proceedings. Baden-
Baden, Germany, August 17-21 1998.

Pohl, Kym J (2001). “Prospective Filters as a Means for Interoperability Among
Information-Centric Decision-Support Systems”; 2001.

Russell, Stuart, Peter Norvig (2003); “Artificial Intelligence A Modern Approach 2nd

Edition”; Prentice Hall, Englewood Cliffs, NJ 2003.

Suguri, Hiroki (1999); “A Standardization Effort for Agent Technologies: The
Foundation for Intelligent Physical Agents and Its Activities”; Proceedings of the 32nd
Annual Hawaii International Conference on System Sciences. 1999.

Zang, Michael (2001); “The Architecture of a Case Based Reasoning Application”;
Office of Naval Research Proceedings 2001.

49

Zang, Michael (2002); “Data, Information and Knowledge in the Context of SILS”;
Office of Naval Research Proceedings 2002.

Zang, Michael (2003); “The Knowledge Level Approach To Intelligent Information
System Design”; Office of Naval Research Proceedings 2003.

50

51

Theory of Standard K-languages as a Model of
a Universal Semantic Networking Language

V.A. Fomichov

Department of Mathematical Methods and Software for Information Processing
and Control Systems, Faculty of Applied Mathematics,
Moscow State Institute of Electronics and Mathematics

(Technical University), B.Tryochsvyatitelsky 1-3/12, 109028 Moscow, Russia
E-mail: vdrfom@aha.ru

Abstract

For eliminating the existing language barrier between the users of the Internet from
different countries, the Japan researchers H. Uchida and M. Zhu proposed a new language-
intermediary, using the words of English language for designating informational units and
several special symbols. This language, called the Universal Networking Language
(UNL), is based on the idea of representing the meanings of separate sentences by means
of binary relations. Since the end of 1990s, UNO has been funding a large-scale project
aimed at the design of a family of natural language processing systems (NLPSs)
transforming the sentences in various natural languages into the expressions of UNL and
also transforming the UNL-expressions into sentences in various natural languages. The
coordinator of this project is the UNO Institute for Advanced Studies by the Tokyo
University.

In this paper it is shown that the expressive possibilities of UNL are rather restricted. First
of all, from the standpoint of representing the meanings of discourses and representing
knowledge about the world. That is why it is concluded that the real content of the
mentioned large-scale UNO project is the creation of an initial version of a Universal
Semantic Networking Language (USNL).

The paper proposes a new way for developing a USNL. This way is to use the theory of
standard K-languages (SK-languages) developed by the author and represented in his
numerous papers in English and Russian as a model of a Universal Semantic Networking
Language. The examples of building semantic representations (SRs) of the natural
language texts (NL-texts) and of representing knowledge pertaining to medicine, biology,
and business are considered. The considered examples show that SK-languages enable us,
in particular, to describe the conceptual structure of texts with : (a) references to the
meanings of phrases and larger parts of texts , (b) compound designations of sets, (c)
definitions of terms , (d) complicated designations of objects , (e) generalized quantifiers
("arbitrary", "certain", etc.). Besides, SK-languages provide the possibilities to describe the

52

semantic structure of definitions, to build formal analogues of complicated concepts, to
mark by variables the designations of objects and sets of objects, to reflect thematic roles.

Keywords

UNL; universal semantic networking language; natural language processing; semantic
representation; standard K-languages; electronic contracting; e-negotiations.

Introduction

In 1999, more than 97% of all Internet hosts were in developed countries, corresponding to only
16% of the world population. As network technologies have been improving and expanding, the
Internet has begun to spread throughout many countries. As a result, the following fundamental
problem has emerged: how to eliminate the language barrier between the users of the Internet in
different countries.

For solving this problem, the Japan researchers H. Uchida and M. Zhu proposed a new language-
intermediary, using the words of English language for designating informational units and
several special symbols. This language, called the Universal networking Language (UNL), is
based on the idea of representing the meanings of separate sentences by means of binary
relationships (Uchida et all, 1999).

The second motive for the elaboration of UNL was an attempt to create the language
means allowing for representing in one format the various pieces of knowledge
accumulated by the mankind and, as a consequence, to create objective preconditions for
sharing these pieces of knowledge by various computer systems throughout the world.

Since the end of 1990s, UNO has been funding a large-scale project aimed at the design of a
family of natural language processing systems (NLPSs) transforming the sentences in various
natural languages into the expressions of UNL and also transforming the UNL-expressions into
sentences in various natural languages. The coordinator of this project is the UNO Institute for
Advanced Studies by the Tokyo University. At the moment, under the framework of this project,
the NLPSs for six official UNO languages are being elaborated (English, Arabic, Spanish,
Chinish, Russian, and French), and also for 10 other languages, including Japanese, Italian, and
German.

UNL represents sentences in the form of logical expressions, without ambiguity. These
expressions are not for humans to read, but for computers. Adding UNL to the network
platforms will change the existing communication landscape. The purpose of introducing
UNL in communication networks is to achieve accurate exchange of information between

53

different languages. Information has to be readable and understandable by users.
Information expressed in UNL can be converted into the user's native language with higher
quality and fewer mistakes than the computer translation systems. In addition, UNL, unlike
natural language, is free from ambiguities.

The conclusion is drawn that the real content of the mentioned large-scale UNO project is
the creation of an initial version of a Universal Semantic Networking Language (USNL).

This paper discusses the shortcomings of UNL and proposes a new way for developing a
USNL. This way is to use the theory of standard K-languages (SK-languages) represented,
in particular, in (Fomichov, 1996, 2002a, b, c) as a model of a Universal Semantic
Networking Language. The examples of building semantic representations (SRs) of natural
language texts (NL-texts) and of representing knowledge pertaining to medicine, biology,
and business are considered.

UNL as an Initial Version of a Semantic Networking Language

The analysis shows that in fact the expressive possibilities of UNL are very restricted. First of
all, the language UNL is oriented at representing the contents of only separate sentences but not
arbitrary discourses. However, UNL is inconvenient for representing, in particular, the meanings
of sentences with complicated goals (being parts of advices, commands, wants, etc.),
designations of sets, the word “notion”, homogeneous members of sentence. Let’s consider, for
instance, the definition “A flock is a large number of birds or mammals (e.g. sheep or goats),
usually gathered together for a definite purpose , such as feeding, migration, or defence”. An
attempt to represent the meaning of this definition in the language UNL , i.e. with the help of
only the designations of binary relations, would lead to a complete destruction of a connection
between the structure of the considered definition and the structure of its UNL-representation.

Besides, the possibilities of using the language UNL for representing knowledge about the world
are very restricted too. Thus, the expressive possibilities of UNL not completely but only
partially correspond to its title “a universal networking language”. That is why it seems to be
reasonable to interpret the language UNL as one of possible versions of a semantic language for
the Internet, or as a version of semantic networking language.

In this connection it is possible to establish an analogy between the studies on the creation of a
semantic networking language (one of its versions being UNL), and the researches on the
development of the languages for forming Web-documents. During the 1990s, one observed the
stormy growth of the World Wide Web, where for representing information one used mainly the
the language of marking-up hypertexts HTML. However, the language HTML was not destined
for distinguishing the meaningful parts of electronic documents; this lead to considerable
difficulties from the standpoint of searching the documents being relevant to the requests of end
users.

54

That is why in the second half of the 1990s the World Wide Web Consortum (usually denoted as
W3C) started to prepare the transition to new, semantically-structured means of representing
information in Web-documents. During several years, two new interconnected language systems
were elaborated: a language for describing metadata about informational resources RDF
(Resource Description Framework) _ the language RDF SSL (RDF Schema Specification
Language). These results provided a basis for announcing the start of a large-scale project of
Semantic World Wide Web (Semantic Web 2001).

Taking into account the above said, we can assume that the language UNL, broadly advertised
today, is not final but only initial version of a semantic networking language. The demands of
formal representing the meanings of complicated discourses (for example, pertaining to
medicine, science, technology, business, ecology, low), and the demands of automatic
conceptual processing of semantic representations (SRs) of such texts with respect to a
knowledge base are to lead in the nearest future to the elaboration of a semantic networking
language of a new generation.

Hence it is reasonable to look for another, more powerful formal approaches to describing
meanings of natural language texts (NL-texts) with the aim to find (if possible) a model for
constructing a universal or widely applicable semantic networking language.

An Outline of the Theory of Standard K-languages

The analysis of the scientific literature on artificial intelligence theory, mathematical and
computational linguistics shows that today the broadest prospects for building semantic
representations (SRs) of NL-texts (i.e., for representing meanings of NL-texts in a formal way)
are opened by the theory of standard K-languages (SK-languages), represented in numerous
publications of the author in English and Russian, in particular, in (Fomichov 1992 – 2002c).

The theory of SK-languages is a mathematical refinement of the following discovery in
linguistics: a system of such 10 operations on structured meanings (SMs) of NL-texts is found
that, using primitive conceptual items as "blocks", we are able to build SMs of arbitrary NL-
texts (including articles, textbooks, etc.) and arbitrary pieces of knowledge about the world. As a
result, the RKCL-theory is a discovery in mathematical linguistics. The formal side is stated very
shortly below.

At the first step (consisting of a rather long sequence of auxiliary steps), the theory defines a
class of formal objects called conceptual bases (c.b.). Each c.b. B is a system of the form ((c[1],
c[2], c[3], c[4]), (c[5],..., c[8]), (c[9],..., c[15])) with the components c[1],..., c[15] being mainly
finite or countable sets of symbols and distinguished elements of such sets. In particular, c[1] =
St is a finite set of symbols called sorts and designating the most general considered concepts;
c[2] = P is a distinguished sort "sense of proposition"; c[5] = X is a countable set of strings used
as elementary blocks for building knowledge modules and semantic representations (SRs) of

55

texts; c[6] = V is a countable set of variables; c[8] = F is a subset of X whose elements are called
functional symbols.

The component c[3] = Gen is a binary relation (a partial order) on St such than if (a,b) belongs to
Gen then either a = b or a concept corresponding to a is a concretization of a concept
corresponding to b. The component c[7] = tp is a mapping from the union of X and V into some
countable set Tps of strings called types and characterizing elements from X and V. Assume,
e.g., that X contains elements ins, ed.board, Tom.Soyer designating the sort "intelligent system",
the concept "editorial board", and a concrete man. Then the values of tp for elements ed.board
and Tom.Soyer may be ^{ins} and ins , respectively. For the designation of the editorial board of
arbitrary concrete edition, the value of tp may be the string {ins}. So types help us to distinguish
objects and concepts qualifying these objects, sets and concepts qualifying these sets.

Each c.b. B determines three classes of formulas Ls=Ls(B), Ts=Ts(B), Ys=Ys(B) (l-formulas, t-
formulas, anf y-formulas). The set Ls(B) is called the standard K-language in the basis B. Its
strings are convenient for building semantic representations (SRs) of NL-texts. Each formula
from Trs(B) has the form d & t , where d belongs to Ls(B), t is a type from Tps(B).

The formulas from Ys(B) have the form a[1] & ... a[n] & d , where a[1], ..., a[n], d belong to
Ls(B), n is not the same for various d, and d is built out of a[1],..., a[n] as out of "blocks" (some
of these blocks may be slightly transformed) by applying only one time some inference rule. In
order to determine for arbitrary s.c.b. B the classes of formulas Ls, Ts, Ys, a group of inference
rules P[0], P[1],..., P[10] is defined. The ordered pair Ks(B) = (B, Rls), where Rls is the set
consisting of all these rules, is called the K-calculus in the c.b. B.

The rule P[0] provides an initial stock of l-formulas and t-formulas. Let z belong to X(B) or
V(B), t is a type from Tps(B), and tp(z)=t. Then, according to the rule P[0], z belongs to Ls(B),
and the string of the form z & t belongs to Ts(B).

Let's regard (ignoring many details) the structure of l-formulas (called also K-strings) which can
be obtained by applying any of the rules P[1],..., P[10] at the last step of inferencing these
formulas. The rule P[1] allows us to build l-formulas of the form q c where q is a semantic item
corresponding to the meanings of such words and expressions as "some", "any", "arbitrary",
"each", "all", "several", "many", etc. (such semantic items will be called intensional quantifiers),
and c is a designation (simple or compound) of a concept. Examples of l-formulas (K-strings) for
P[1] as the last applied rule are as follows:

certn person, certn group * (Compos1, student)(Number,12),
every person, every person * (Age,30.year).

The rule P[2] is destined for constructing the strings of the form f(a[1],..., a[n]), where f is a
designation of a function, n>=1, a[1],..., a[n] are l-formulas built with the help of any rules from
the list P[0],..., P[10]. The examples of l-formulas built with the help of P[2]: Cities(Europe),
Number(Cities(Europe)). The rule P[3] enables us to build the strings of the form (a1 = a2) ,
where a1 and a2 are l-formulas formed with the help of any rules from P[0],..., P[10], and a1 and
a2 represent the entities being homogeneous in some sense. Examples of K-strings for P[3]:

56

(y1 = Tilburg), (Author(War.and.Peace) = L.Tolstoy).

The destination of the rule P[4] is, in particular, to build K-strings of the form r(a[1],..., a[n]),
where r is a designation of n-ary relation, n>=1, a[1],..., a[n] are the K-strings formed with the
aid of some rules from P[0],..., P[10]. The examples of K-strings for P[4]:

Belongs(Namur, Cities(Belgium)), Subset(Cities(Belgium), Cities(Europe)).

The rule P[5] allows us to construct the K-strings of the form d : v , where d is a K-string not
including v, v is a variable, and some other conditions are satisfied. Using P[5], one can mark by
variables in the SR of any NL-text: (a) the descriptions of diverse entities mentioned in the text
(physical objects, events, concepts, etc.), (b) the SRs of sentences and of larger texts' fragments
to which a reference is given in any part of a text. Examples of K-strings for P[5]: all person :
Z1, Less(Age(J.Smith),30.year) : P1. The rule P[5] provides the possibility to form SRs of texts
in such a manner that these SRs reflect the referential structure of NL-texts. The examples
illustrating this are considered below.

The rule P[6] permits to build the K-strings of the form ÿ d, where d is a K-string satisfying
a number of conditions. The examples of K-strings for P[6]:

ÿ poet, ÿ Belongs(Bonn, Cities(Belgium)).
Here ÿ designates the connective "not".

Using the rule P[7], one can build the K-strings of the forms (a[1] Ÿ a[2] Ÿ ... Ÿ a[n]) or (a[1] ⁄
a[2] ⁄... ⁄ a[n]), where n>1, a[1],...., a[n] are K-strings designating the entities which are
homogeneous in some sense. In particular, a[1],..., a[n] may be SRs of assertions (or
propositions), descriptions of physical things, descriptions of sets consisting of things of the
same kind, descriptions of concepts. The following strings are examples of K-strings (or l-
formulas) for P[7]:

(Finnland ⁄ Norway ⁄ Sweden),
(Belongs((Namur Ÿ Leuven Ÿ Ghent), Cities(Belgium)) Ÿ

ÿ Belongs(Bonn, Cities((Finnland ⁄ Norway ⁄ Sweden)))).

The destination of the rule P[8] is to build, in particular, K-strings of the form
c * (r[1],b[1]),..., (r[n],b[n]) ,

where c is an informational item from the primary universe X designating a concept, for i=1,...,n,
r[i] is a function with one argument or a binary relation, b[i] designates a possible value of r[i]
for objects characterized by the concept c. The following expressions are examples of K-strings
for P[8]:

man * (F.name,'Peter')(Year.of.studies,1),
group * (Compos1, student)(Number,21), turn * (Orientation,left) .

The rule P[9] enables to build, in particular, the K-strings of the forms #A# v (des) D and #E# v
(des) D, where #A# is the universal quantifier, #E# is the existential quantifier, des and D are K-

57

strings, des is a designation of a prime concept ("person", "city", "integer", etc.) or of a
compound concept ("integer greater than 200", etc.). D may be interpreted as a SR of an
assertion with the variable v about any entity qualified by the concept des. The examples of K-
strings for P[9] are as follows: #A# x1 (nat) #E# x2 (nat) Less(x1,x2), #E# y (country *
(Location, Europe)) Greater(Number(Cities(y)),15).

The rule P[10] allows us to construct, in particular, the K-strings of the form <a[1],..., a[n]>,
where n>1, a[1],..., a[n] are K-strings. The strings obtained with the help of P[10] at the last
step of inference are interpreted as designations of n-tuples. The components of such n-tuples
may be not only designations of numbers, things, but also SRs of assertions, designations of sets,
concepts, etc. Using jointly P[10] and P[4], we can build the string
Study1(<Agent1,some man * (F.name,'Peter')><Institution,
Moscow.State.Univ.>,<Time, 1996>),
where the thematic roles Agent1, Institution, Time are explicitly represented.

The scheme set forth above gives only a very simplified impression about a thoroughly
elaborated new mathematical theory including, in particular: (a) the definitions of the class of K-
calculuses and the class of standard K-languages in conceptual bases; (b) a number of theorems
stating some properties of the new languages; (c) the definition and investigation of the
properties of a new class of partial algebras called algebraic systems of conceptual syntax and
providing the definition of the class of K-languages as languages isomorphic in some strict
mathematical sense to standard K-languages.

The Definition of the Class of SK-languages as a Model of a Universal

Semantic Networking Language

The analysis shows that it is not difficult to approximate all expressive mechanisms of UNL by
means of SK-languages, because the rule P[4] is destined for constructing formulas with the
names of n-ary relationships and the rule P[8] allows for building compound designations of
notions.
Example. Let’s consider the UNL-expression to(train(icl > thing), London(icl > city)) ; it
denotes a train for London and is taken from (Uchida, Zhu, and Della Senta, 1999). This
expression can be approximated by the K-string S1 of the form
Destination (certn train * (Concretization, thing), certn city * (Name, ‘London’)
or by the K-string S2 of the form
certn train * (Concretization, thing)(Destination, certn city * (Name, ‘London’)).

However, the theory of SK-languages possesses many of important advantages as concerns
constructing a semantic networking language of a new generation in comparison with UNL.
Let’s illustrate a number of such advantages. Preliminary, let’s introduce the concept of a K-
representation of a NL-text. If T is a NL expression in NL and a string E from a SK-language can
be interpreted as a semantic representation (SR) of T, then E will be called a K-representation
(KR) of the expression T.

58

Example 1. Let T1 = “A flock is a large number of birds or mammals (e.g. sheep or goats),
usually gathered together for a definite purpose , such as feeding, migration, or defence”. T1
may have the first-level K-representation Expr1 of the form

Definition1 (flock, dynamic-group * (Qualitative-composition, (bird ⁄ mammal *
(Examples, (sheep Ÿ goal)))), S1, (Estimation1(Quantity(S1), high) Ÿ Goal-of-forming (S1,
 certn purpose * (Examples, (feeding ⁄ migration ⁄ defence)))))

The analysis of this formula enables us to conclude that it is convenient to use for
constructing semntic representations (SRs) of NL-texts: (1) the designation of a 5-ary
relationship Definition1, (2) compound designations of concepts (in this example the
expressions mammal * (Examples, (sheep Ÿ goal)) and dynamic-group * (Qualitative-
composition, (bird ⁄ mammal * (Examples, (sheep Ÿ goal)))) were used), (3) the names of
functions with the arguments and/or values being sets (in the example, the name of an
unary function Quantity was used, its value is the quantity of elements in the set being an
argument of this function), (4) compound designations of intentions, goals (in this example it
is the expression certn purpose * (Examples, (feeding ⁄ migration ⁄ defence))) .

The structure of the constructed K-representation Expr1 to a considerable extent reflects
the structure of the definition T1. Meanwhile, any attempt to represent the content of this
definition in the language UNL, i.e. with the help of only binary relationships, would
destroy any similarity between the structure of T1 and the structure of its UNL-
representation.

Example 2. Let T2 = "All granulocytes are polymorphonuclear; that is, they have multilobed
nuclei". Then T2 may have the following KR Expr2:

(Property(arbitr granulocyte : x1, polymorphonuclear) : P1 Ÿ
Explanation(P1, If-then (Have1(<Subjectt1, x1>,<Object1, arbitr nucleus : x2>),
Property(x2, multilobed)))) .

Here P1 is the variable marking the meaning of the first phrase of T2; the strings Subjectt1,
Object1 designate thematic roles (or conceptual cases).

The key role in the construction of the K-representation Expr2 was played by the rule
P[5]; it enabled us to introduce the mark x1 for designating an arbitrary granulocyte, the
mark x2 for designating the nucleus of the cell x1, and the mark P1 ___ for designating
semantic representation (SR) of the first sentence from the discourse _2. The mark (variable)
P1 enables to explicate in the structure of SR of T2 the reference to the meaning of the
first sentence; this reference is given by the word combination “that is”.

59

The language UNL doesn’t provide the means for representing the meanings of sentences and
larger fragments of discourses. Meanwhile, the last example contains on the shortest discourses
of the kind. The textbooks in various fields of knowledge contain a lot of much more
complicated discourses with the references to the meanings of sentences and larger fragments of
discourses.

Example 3. Let T3 = "Type AB blood group - persons who possess types A and B isoantigens
on red blood cells and no agglutinin in plasma". Then the following formula may be interpreted
as a KR of T3:

Definition (type-AB-blood-group, certn set * (Compos1, person) : S1,
#A# x1(person) If-and-only-if(Belong1(x1, S1), (Have1(<Subject1, x1>,
<Object1, (certn set * (Compos1, type-A-isoantigen) Ÿ
certn set * (Compos1, type-B-isoantigen))>,
<Location, certn set * (Compos1, cell1 * (Part, certn red-blood *
(Belong2, x1))>) Ÿ ÿ Have1(<Subject1, x1>, <Object1,
certn set * (Compos1, agglutinin)>, <Location, certn set *
(Compos1, plasma1 * (Belong2, x1))>)))) .

Here #A# is the universal quantifier, the string Compos1 designates the binary relation
"Qualitative composition of a set", the string certn is interpreted as the referential quantifier.

Example 4 (The. possibility of constructing the compound designations of goals).
Let T4 = “The owner of an insurance police calls the firm “Europ Assist”in order to tell about a
damage of a car”. Then T4 may have a KR

Situation (e1, telephone-call * (Agent1, certn person * (Owner, certn insur-police1))(Object2,
certn firm1 * (Name, “Europ Assist”)(Goal, info-transfer * (Theme1, certn damage * (Object1,
certn car)))) .

The considered examples show that SK-languages enable us, in particular, to describe the
conceptual structure of texts with : (a) references to the meanings of phrases and larger parts of
texts , (b) compound designations of sets, (c) definitions of terms , (d) complicated designations
of objects, (e) generalized quantifiers ("arbitrary", "certain", etc.). Besides, SK-languages
provide the possibilities to describe the semantic structure of definitions, to build formal
analogues of complicated concepts, to mark by variables the designations of objects and sets of
objects, to reflect thematic roles.

The creation of a semantic networking language belonging to a new generation on the basis of
the definition of the class of SK-languages, in particular, will allow for: (1) constructing not only
semantic representations (SRs) of separate sentences but also SRs of complicated discourses with
the help of reflecting the references to the previously mentions entities and to the meanings of
phrases and larger fragments of discourses; (2) forming compound designations of sets, concepts,
goals of intelligent systems and destinations of things; (3) joining with the help of logical
connectives “and”, “or” not only designations of assertions (as in predicate logic) but also

60

designations of concepts, objects, sets of objects; (4) reflecting the semantic structure of he
phrases with the words “concept”, “notion”; (5) considering non-traditional functions with
arguments and/or values being sets of objects, sets of concepts, SRs of texts, sets of SRs of texts.

Thus, the theory of SK-languages opens the real prospects of constructing a semantic networking
language of a new generation with the expressive possibilities being much closer to the
expressive possibilities of Natural Language in comparison with the language UNL described in
(Uchida, et al. 1999; Uchida and Zhu 2001; Zhu and Uchida 2002).

In (Fomichov 1996 – 2002c), the hypothesis is formulated that the theory of standard K-
languages provides the effective means for describing structured meanings (i.e., for representing
contents) of arbitrary NL-texts in arbitrary thematic domains. That is why the following
conjecture seems to be well grounded: the theory of standard K-languages can be used as a
model of a Universal Semantic Networking Language.

Conclusions

The analysis of expressive power of the language UNL provided the possibility to establish an
analogy between the studies on constructing a semantic networking language (UNL being one of
its versions) and the researches on the development of the informational languages for forming
Web-documents. The conclusion is drawn that, similarly to the ongoing process of the transition
from the language HTML to new, semantically-structured means for representing information on
the Web, in the field of constructing a semantic networking language (SNL) the demands of
practice must lead in the nearest years to the creation of a SNL belonging to a new generation in
comparison with UNL.

The prospects of using the theory of standard K-languages (SK-languages) for the elaboration of
a SNL with the expressive power exceeding the expressive power of UNL are set forth. The
hypothesis is put forward that the theory of SK-languages can be used as a model for the
development of a Universal Semantic Networking Language.

Besides, the definition of the class of SK-language can be used for the elaboration of formal
languages destined for representing the records of commercial negotiations carried out by
computer intelligent agents and for forming the contracts being the results of such negotiations.

References

Fomichov, V. (1992); Mathematical Models of Natural-Language-Processing Systems as
Cybernetic Models of a New Kind; Cybernetica (Belgium), Vol. XXXV, No. 1 (pp. 63-91).

Fomichov, V.A. (1996); A Mathematical Model for Describing Structured Items of Conceptual
Level; Informatica (Slovenia); Vol. 20, No. 1 (pp. 5-32)

61

Fomichov, V.A. (2002a); Mathematical Foundations of Representing Meanings of Texts for the
Development of Linguistic Informational Technologies. Part 1. A Model of the System of
Primary Units of Conceptual Level; Informational Technologies (in Russian), No. 10 (pp. 16-
25).

Fomichov, V.A. (2002b); Mathematical Foundations of Representing Meanings of Texts for the
Development of Linguistic Informational Technologies. Part 2. A System of the Rules for
Building Semantic Representations of Phrases and Complicated Discourses; Informational
Technologies (in Russian), No. 11 (pp. 34-45).

Fomichov, V.A. (2002c); Theory of K-calculuses as a Powerful and Flexible Mathematical
Framework for Building Ontologies and Designing Natural Language Processing Systems (ed.
Troels Andreasen, Amihai Motro, Henning Christiansen, Henrik Legind Larsen), Flexible Query
Answering Systems. 5th International Conference, FQAS 2002, Copenhagen, Denmark, October
27 - 29, 2002. Proceedings; LNAI 2522 (Lecture Notes in Artificial Intelligence, Vol. 2522),
Springer: Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Tokyo
(pp. 183-196).

Semantic Web (2001); Semantic Web Activity Statement. W3C, URL
http://www.w3.org/2001/sw/activity.

Uchida, H., Zhu, M., and T. Della Senta. A Gift for a Millennium., 1999. A book
published by the United Nations University. Available on-line at
http://www.unl.ias.unu.edu/publications/gm/index.htm.

Uchida H. and Zhu M. The Universal Networking Language beyond Machine
Translation. UNDL Foundation. 2001.

Zhu M. and Uchida H. Universal Word and UNL Knowledge Base//Proceedings of the
International Conference on Universal Knowledge Language (ICUKL-2002), 25-29
N o v e n m b e r 2 0 0 2 , G o a o f I n d i a .
http://www.unl.ias.edu/publications/UW%20and%20UNLKB.htm.

62

63

Section 2:

Management of Data in Context

64

65

Real-Time Object-Oriented Databases:
Theory and Applications

Michael P. Card

Sensis Corporation
5793 Widewaters Parkway, Dewitt, NY 13214

Abstract

Embedded applications, such as intelligent sensor networks, are increasingly responsible for
managing large volumes of complex data. The services of a database engine (e.g., transaction
semantics, data distribution, fault tolerance and failure recovery, persistence) are becoming more
and more important to these applications.

Traditional database engines are not designed for use in real-time systems where sub-millisecond
transaction execution times are required, nor are they designed for use in embedded systems
where long-term unattended operation and careful use of resources is required. In addition,
traditional database engines are typically based on the relational data model, which requires the
application programmer to map programming language objects to and from relational tables. All
of these factors reduce performance and inhibit the use of database technology in the real-time
and embedded problem domains.

This paper presents some of the new work being done in real-time object-oriented databases, and
explores the benefits this technology offers to application developers. Examples will be
provided of how this technology has been used in demanding applications like real-time pattern
recognition and how it could be used in both military and commercial distributed sensor
networks.

Keywords

object-oriented; database; real-time; pattern recognition; spatial data; spatial index

What is an object-oriented database?

An object-oriented database is a piece of software that extends the capabilities of an object-
oriented programming language to include object persistence and transaction semantics. This is
shown in Figure 1.

66

Figure 1: Object databases extend programming language capabilities

There are of course other ways to make objects persistent and enforce transaction semantics to
ensure consistent updates to the objects, such as object/relational mappings. Object databases
have a distinct advantage over these kinds of approaches, however, because they can directly use
the type system of the object-oriented programming language. Eliminating the “mapping”
process between the type system of the programming language and the type system of the
database engine (e.g. SQL) offers significant performance advantages and can also reduce
application development time. (Loomis 1995) defines the role of an object database this way:

“The fundamental role of an object DBMS is to provide persistent storage management for
objects in a way that

1. allows for highly efficient but easy access from object programming languages,
2. hides the complexities of distribution of objects across network sites, and
3. allows multiple users and applications shared, protected access to the objects.”

What makes an object-oriented database “real-time”?

The primary characteristic for true-real-time software is determinism. For a database engine, this
implies that the worst-case execution times for a transaction must be predictable so that an
application designer can guarantee that system timing constraints will be met. It is also desirable
that the worst-case and best-case execution times for a transaction differ by as little as possible.
Designing a database engine with these kinds of constraints in mind requires several significant
architectural trade-offs, and this proscribes the possibility of creating a real-time object database
by simply “tweaking” a non-real time one (Roark et al. 1996). Moreover, the kinds of systems
that might use a real-time database engine are frequently embedded, and operation in an
embedded environment levies additional requirements on the architecture of the database engine.
The following are attributes that an object database must have in order to succeed in a
demanding real-time, embedded environment:

1. Predictable, bounded transaction execution times- The concurrency control system,
storage management, and data structures used by the database engine must enable the a
priori computation of the worst-case execution time for a transaction using a specified

67

database schema containing a specified number of objects of a specified size. This allows
a designer to structure the schema to ensure timelines will be met. A transaction here
refers to a sequence of calls to the object database methods for accessing objects in the
database, such as searching an index, iterating through a collection, creating or deleting
database-managed objects etc.

2. Predictable, bounded resource consumption- The storage management and concurrency
control systems used by the database engine must enable the a priori computation of the
amount of storage required to hold a specified number of objects of a specified size. This
allows a designer to determine the required storage “footprint” for the database engine.

3. Long-term unattended operation- The database engine must be able to operate 24/7
indefinitely without human intervention and without being taken off-line for storage
defragmentation or other database maintenance.

4. Support for main-memory databases- The database engine must support the creation of
databases with full transaction semantics, recovery, etc. in main memory as well as in
secondary persistent storage (e.g. disks).

5. Efficient concurrency control- The concurrency control system used by the database
engine must support efficient read/write access to objects and must minimize the
possibility of priority inversion and mitigate it when it does occur (e.g. priority
inheritance etc.).

6. Fault tolerance- The database engine must support, at a minimum, a “hot spare”
redundancy policy to support uninterrupted operation in the event of a failure on the
primary database host.

There are other attributes one could add to a list like this, but these are the fundamental ones
required for successful database deployment in most real-time embedded systems.

The following sections describe the kinds of applications that use (or could use) real-time object
database engines.

Real-time pattern recognition

Real-time pattern recognition is increasingly important as more and more information is
digitized. Applications that make use of real-time database technology as part of a pattern
recognition system cross the spectrum from real-time signature verification (BirdStep 2004) to
electronic warfare (EW) (McDaniel and Schaefer 2003). The author has some experience in the
EW domain, and it is among the most challenging in terms of performance requirements so that
will be used to provide some context for the discussion of this topic.

EW systems are classical pattern recognition machines as depicted in the block diagram shown
in Figure 2. This block diagram shows components from a surface ship EW system, which would
typically be used for detecting and classifying threats like enemy aircraft and anti-ship missiles.
The system uses sensors (antennae) to detect radar signals. The sensor outputs go to a pulse
processor that typically includes a wideband RF receiver and a digitizer. The pulse processor is
the feature extractor for the system: that is, it measures the characteristics of the received signals
that will allow those signals to later be classified. Common measurements include the frequency,

68

amplitude, pulse duration, spacing between pulses, and modulation within and between pulses
for these basic measures (Adamy 2001).

Sensor

Pulse
Processor

Tracker /
Signature
Analysis

Feature Extractor Classifier User Interface

control feedback from user

Figure 2: EW System Block Diagram

When the features of the intercepted emitter mode have been extracted by the pulse processor,
the resulting feature vector is sent to the tracker/signature analysis function, which serves as the
classifier for the system. It is here that the real-time search of the database of emitter signatures
takes place. Finally, the resulting track and its threat classification are sent to the user interface
for display, and typically a human operator can then adjust the operation of the system using
available controls. This provides a feedback loop to optimize system performance.

Emitter modes typically are not a point in feature space, but rather occupy a volume. This is
because modulation is commonly used on one or more of the key attributes of the mode. In
parameter space, the mode can therefore be represented as a hypercube per Figure 3 below.

F
re

q
u

en
cy

Pulse Repitition Interval (PRI)

Pulse W
idth

emitter mode A

emitter mode B

overlap

Figure 3: Emitter parameter hypercubes

69

Note that this means the emitter mode signatures are spatial data, which in turn implies that they
do not have a partial ordering (i.e. you cannot define a < operator for them) and therefore cannot
be efficiently organized with a standard point access method (PAM) like a B-tree.

In the EW test described in (McDaniel and Schaefer 2003), feature vectors were presented to the
classifier at a rate of 5 per second. The signature database contained emitter mode signatures for
3,000 kinds of emitters, and these emitters were in turn associated with the platforms (ships,
planes, missiles, etc.) that carried them. The results of their tests showed a commercial real-time
relational database with all data in RAM was able to support classification and find all of the
possible platforms for the matching emitter modes in an average time of about 200 milliseconds,
with the actual time varying between about 2 milliseconds and 5+ seconds as shown in Figure 5-
3 in (McDaniel and Schaefer 2003).

While this performance is certainly better than a disk-based relational database, a real-time
object database should be faster and more deterministic than the results reported in (McDaniel
and Schaefer 2003). Part of the reason for this is that the object database can include R-tree
based spatial indexes which would greatly accelerate range query searches of the emitter mode
signatures database. Also, navigating through a complex schema like that shown in Figure 4-3 of
(McDaniel and Schaefer 2003) is faster in an object database because the objects contain links to
all other objects that they are related to. This obviates the need for costly joins or secondary key
lookups to find related objects, and of course there is no need to transform objects between the
type system of the application (C++, Ada, Java, etc.) and the type system of the database (SQL
tables). Eliminating this kind of overhead has significant performance advantages for these kinds
of applications. It would be interesting to repeat the experiment in (McDaniel and Schaefer
2003) with a real-time object database and quantify the differences.

Real-time control systems

Another domain where a real-time object-oriented database could be useful is that of real-time
control systems. Of particular interest are those systems containing a distributed network of
sensors, such as advanced building control systems. There are currently many systems available
that monitor and control the indoor environment (e.g. the Heating, Ventilation, and Air
Conditioning (HVAC) system), but the use of embedded database technology would make
advanced capabilities like crisis management, evacuation, guidance of first responders, and
counter-terrorism response possible. Consider the diagram shown in Figure 4:

70

CISCOSYSTEMS CISCOSYSTEMS

PDA

Fire/smoke/CO sensors

Defib kit

wireless notification
when kit removed from

enclosure

wireless notification
of best route for

responders

HVAC/sprinkler actuators

database of sensor and
actuator state info, floor

plan of building in spatial
database

building control LAN

Figure 4: Database in building control system

Here, the building control system, based on an object database manager, communicates with a
distributed network of sensors in the building via a building control “LAN,” which could include
both wired and wireless components. The object database could contain a “building schema”
with the sensors, HVAC plenums, sprinkler heads, portable defibrillator kits, and other system
components in a spatial index. This would allow the building control application to perform
spatial query processing based on sensor events. For example, if some of the sensors report
detection of smoke, the application can query the database for plenum ducts serving the area
where the sensor is located and command the actuators to close or open the ducts as desired. This
technique is useful not only for managing smoke or carbon monoxide from a fire, but it could
also be used to counter other threats such as injection of a toxin into the building’s HVAC
system. Responses to threats like this are even more time-critical than responses to fires, and a
real-time database is needed due to the large number of toxin sensors and the very low latencies
required once detection occurs.

In addition to being able to operate the HVAC and sprinkler systems in response to sensor
inputs, the embedded database could also provide best routes into the building for first
responders. This could be done by storing the floor plans for the building into a spatial indexing
structure and calculating the fastest and safest way to the trouble area being reported by the
sensors. A corresponding set of instructions could be broadcast from the wireless network to
handheld units, radios or other first responder equipment. This kind of capability is especially
useful for handling the more routine forms of emergencies such as heart attacks or other health
emergencies for building occupants. In Figure 4, the wall mount unit for a portable electronic
defibrillator (PED) sounds an alarm and sends an alert to the network when its PED is removed.

71

Including PEDs, fire extinguishers or other safety devices with usage alarm capabilities in the
database would enable the building control system to call the 911 center or direct the building’s
own emergency response team to the trouble area by the best route. The time saved in getting
first responders to the scene could be the difference between life and death.

A complex building control system like the one in Figure 4 must maintain the state of the
building. The embedded database would be responsible for updating the building “state vectors”
over time. This requires fast processing of temporal data (e.g. sensor reading histories), and this
has been a difficult problem when relational databases have been used in these kinds of systems
(Olken et al. 1998). This is another area where object databases excel because their collection
types are richer than the simple 2-D table used in relational products. An in-memory object
database with a time-ordered circular queue collection would have addressed the performance
issues described in (Olken et al. 1998).

A related problem in this domain is building security. Future building designs will likely
incorporate biometric sensors to verify identity within the building. Each type of biometric
sensor has its inherent weaknesses that can be mitigated using fusion techniques
(Veeramachaneni et al. 2003). Figure 1 in (Veeramachaneni et al. 2003) shows a biometric
security system based on a network of sensors. These sensors provide different kinds of
biometric readings (e.g. face identification, fingerprints, voice identification, etc.) and supply an
“accept/reject” decision to a Bayesian decision function. In order to supply an identity
accepted/rejected hypothesis, however, the biometric sensors must have a database of feature
vectors against which to compare their current input. This is where an embedded real-time object
database could be used to construct the kind of system described in (Veeramachaneni et al.
2003). Figure 5 below shows the original Figure 1 from (Veeramachaneni et al. 2003) with the
data management functions added.

Figure 5: Biometric building security network with embedded ODBMS

72

In Figure 5, a master database of feature vectors is kept in the “Mission Manager” function. This
database contains all of the feature vectors for all of the building’s occupants. The database
might contain sets of fingerprints, digital portraits, voice prints, or other forms of biometric
identification information. Each biometric sensor could open a replicant of the relevant data and
use this replicant to perform pattern-matching queries. The advantage of a configuration like this
is that the sensors would then not have to query feature vector data from a central location (thus
reducing network bandwidth). Also, this design allows for real-time updates to the master
database so that, for example, building guests could be entered into the database and their feature
vectors would be automatically propagated to the building’s sensors. An embedded real-time
object database is an ideal fit for such a system.

New real-time object database work: optimizing spatial indexing

The possible utility of real-time object databases for real-time pattern-matching applications has
been described in previous sections. Use of an embedded database in these domains requires an
efficient and robust dynamic spatial indexing mechanism. The data structure of choice for this
kind of data has been the R-tree (Guttman 1984) and its variants, such as the R*-tree (Beckmann
et al. 1990). Unfortunately, the R-tree and its variants do not perform well in “high dimensional”
space because the bounding boxes for the tree’s directory nodes begin to overlap significantly as
the number of dimensions increases (Bohm et al. 2001). This causes so many nodes in the tree to
be visited during a query that the performance becomes worse than a linear search. This problem
does not generally occur for data with 3 or 4 dimensions, but multimedia data frequently have 10
or more dimensions. These dimensions represent color histograms and other statistical measures
of images. The need to search databases of images for nearest matches in real time requires a
spatial index with sublinear performance for a large number of dimensions.

The X-tree (Berchtold et al. 1996) was an early effort to mitigate the effects of “dimensional
degradation” on the R-tree. The X-tree creates “super-nodes” in places in the R-tree where the
directory nodes begin to overlap significantly. This essentially turns a portion of the tree into an
array, which ensures that a query that accesses that part of the tree will not have performance that
is worse than a linear search. The X-tree shares the one of the chief advantages of the R-tree, the
ability to index both points and rectangles. Later efforts to retain this advantage and achieve
sublinear performance (i.e. faster than a linear search) include the QSF tree (Orlandic and Yu
2000). The QSF tree maintains two “bounding boxes” for each index node. One bounding box
(the “L” region) contains all of the “lower left” corners for all of the spatial keys in a node, and
the other (the “H” region) contains all of the “upper right” corners for all of the spatial keys in a
node. The “L” regions for the nodes are sorted using a kdB tree, and the tree is searched using
the “lower left” corner of the query region. When a matching leaf node is found, the upper-right
corner of the query region is checked against the “H” regions in matching leaf nodes to be sure
it’s a match. The QSF tree thus uses a PAM that has no overlap in its directory nodes, but which
is capable of storing rectangles as well as points. This makes the QSF tree an excellent candidate
for a spatial index in an object database.

Another option for complex, high-dimensionality data would be to use a Support Vector
Machine with a Gaussian kernel to find clusters in the data (Frailis et al. 2003). The clusters

73

found by the SVM could then be inserted into a spatial index for high-dimensional data that is
designed to sort clusters, such as the Cluster Tree (Yu and Zhang 2003). The SVM could be
deployed as a database application and be optimized for use in a real-time system, where it
would serve as a “cluster-finder.” The resulting clusters could then be stored in a Cluster Tree.
The clusters which are initially loaded into a Cluster Tree can be thought of as its “training set”
and new data points can be directly inserted into the tree without the SVM figuring out what
cluster they belong to. A system like this could be very useful for doing pattern recognition and
analysis on well-known kinds of data where a training set of clusters could be loaded into the
Cluster Tree. For more dynamic environments, the application would need to have a mechanism
to determine when the Cluster Tree would need to be “re-trained.”

Conclusion

Embedded real-time applications are performing increasingly more complex processing as
available CPU power, network bandwidth, and storage speed increases while power consumption
for these chipsets decreases. The need for robust database capability in these systems is clear.
The programming languages currently available for the construction of these systems do not
include transaction semantics or seamless persistence. Real-time object databases are therefore
an excellent choice to meet the data management needs for these systems, as they minimize both
the development time and resource utilization for the database application(s) in the system.
Object databases also can accommodate new and novel indexing schemes for dealing with
complex, “high dimensionality” data. This kind of data is becoming more common in databases
as the need arises to do biometric identification and real-time image matching, and real-time
object databases are a superior technology for the ideal accessing and managing this information.

References

Adamy, David (2001); EW101- A First Course in Electronic Warfare; Artech House radar
library (pp. 73-103)

Beckmann, Norbert, Kriegek, Hans-Peter, Schneider, Ralf, and Seeger, Bernhard (1990); The
R*-tree: An efficient and robust access method for points and rectangles; Proceedings of the
ACM SIGMOD International Conference on the Management of Data (pp. 322-331)

Berchtold, Stefan, Keim, Daniel A., and Kriegel, Hans-Peter (1996); The X-tree: A Data
Structure for High-Dimensional Data; Proceedings of the 22nd VLDB Conference (pp. 28-39)

B i r d S t e p C o r p o r a t i o n (2 0 0 4) ; c o m p a n y ’ s e x t e r n a l w e b s i t e
http://birdstep.com/solutions/database_enduser.php3; see use of BirdStep real-time object
database in AutoSig Systems, Inc. automatic signature verification

Bohm, Christian, Berchtold, Stefan, and Keim, Daniel A. (2001); Searching in High-
Dimenssional Spaces: Index Structures for Improving the Performance of Multimedia Databases;
ACM Computing Surveys, Vol. 33, No.3 (pp. 322-373)

74

Chakrabarti, Kaushik, and Mehrotra, Sharad (2000); The Hybrid Tree: An Index Structure For
High-Dimensional Spaces; Proceedings of the 15th International Conference on Data Engineering
(pp. 440-447)

Frailis, Marco, De Angelis, Alessandro, and Roberto, Vito (2003); Data Management and
Mining in Astrophysical Databases; A Non-linear World: the Real World- Second International
Conference on Frontier Science (pp. 1-22)

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John (1994); Design Patterns:
Elements of Reusable Object-Oriented Software; Addison-Wesley (pp. 257-272)

Guttman, Antonin (1984); R-Trees: A Dynamic Index Structure for Spatial Searching;
Proceedings of the ACM SIGMOD International Conference on the Management of Data (pp.
47-57)

Loomis, Mary E.S. (1995); Object Databases: The Essentials; Addison-Wesley (pp. 15)

McDaniel, Dave and Schaefer, Gregory (2003); Real-time DBMS for Data Fusion; Proceedings
of the 6th International Conference on Information Fusion (pp. 1334-1341)

Olken, Frank, Jacobsen, Hans-Arno, McParland, Chuck, Piette, Mary Ann, and Anderson, Mary
F. (1998); Object Lessons Learned from a Distributed System for Remote Building Monitoring
and Operation; Proceedings of OOPSLA 1998 (pp. 288)

Orlandic, Ratko, and Yu, Byunggu (2000); A Study of MBR-Based Spatial Access Methods:
How Well They Perform In High-Dimensional Spaces; Proceedings of the 2000 International
Database Engineering and Applications Symposium (IDEAS ’00) (pp. 306-315)

Roark, Mayford B., Bohler, Michael and Eldridge, Barbara L. (1996); Embedded Real-Time and
Database: How Do They Fit Together?, Proceedings of the Software Technology Conference
1996, Track 9, Embedded Systems (pp. 6-13 of this paper)

Veeramachaneni, Kaylan, Osadciw, Lisa, and Varshney, Pramod K. (2003); Multisensor
Surveillance Systems: The Fusion Perspective; Kluwer Academic Publishers (pp. 265-286)

Yu, Dantong and Zhang, Aidong (2003); ClusterTree: Integration of Cluster Representation and
Nearest-Neighbor Search for Large Data Sets with High Dimensions; IEEE Transactions on
Knowledge and Data Engineering, vol. 15, no.5 (pp. 1316-1337)

75

Model-based Data Management for Mediation Services
for Intelligent Software Agents

Andreas Tolk, Ph.D.
Virginia Modeling Analysis and Simulation Center

Old Dominion University
Norfolk, VA 23529, United States

+1 (757) 686 – 6203
atolk@odu.edu

Johnny J. Garcia
General Dynamics/ AIS

7025 Harbour View #101
Suffolk, VA 23435, United States

+1 (757) 673 – 2411
john.garcia@gd-ais.com

Keywords
Service-oriented Architectures, Extensible Markup Language (XML),

Command & Control Information Exchange Data Model (C2IEDM), Mediation Services,
Global Information Grid (GIG)

Abstract
Mediation services can be generally defined as a mechanism to map interchange formats (map
them to what?), thus increasing the ability for disparate systems to exchange information
through common methods. However, when intelligent software agents use these meditation
services, syntactical translations of formats are not sufficient.
The semantic context has to be captured and interchanged as well; a common ontology is needed
as the basis for the mediation service. While in the commercial world several recent publications
are looking at possible automated solutions, in complex environments (is the commercial world
not complex?), data engineering is necessary in order to support semantically meaningful me-
diation layers. Model-based data management uses a common reference model to map data
models to data sources to support intelligent software agents for their internal decision proc-
esses
This paper defines the phases of data engineering, shows potential conflicts and how they can be
solved, and gives an example from the military application domain by showing how the Com-
mand and Control Information Exchange Data Model (C2IEDM) developed by the North Atlan-
tic Treaty Organization (NATO) can be used as a common reference model for military applica-
tions.

Overview
In order to support operations with rapidly changing requirements, service oriented architectures
are being developed in lieu of the often too inflexible traditional solutions. As an alternative to
having a system fulfilling a set of predefined requirements, services fulfilling requirements are
identified, composed, and orchestrated to achieve the current users’ needs in an ongoing opera-
tion. Grid Computing, System-of-Systems engineering approaches, and the Global Information
Grid are examples of this trend. Intelligent agents are required to identify the service require-
ments in a given situation, find applicable services, compose these services to support the opera-
tion, orchestrate their execution, and evaluate the result in a way meaningful to the user.
One of the most urgent requirements in this circle is to ensure meaningful interoperability of the
information exchanged between the services. This is a real challenge during the design and im-

76

plementation of the service since the designer does not know with which other services this
service will communicate. This can only be determined during runtime. Although in the com-
mercial world, some applications try to do such mappings automatically, their domains are rela-
tively simple, such as address mapping problems (Su et al. 2001). For more complex problem
sets, explicit mapping of data must be done. A common way must be used to capture the format
(syntax), meaning (semantics), and the use (pragmatics) of data in order to avoid ambiguity and
structural variances when composing the services. This is the domain of model based data man-
agement. The results can be used to establish the required mediation layers necessary for the in-
telligent agents to support the process effectively.

Service Oriented Architectures
Traditional information technology (IT) followed a waterfall model starting with a set of user
requirements, which led thru several stages to the system definition, system design, and system
implementation. The reality of required distributed computing and the necessity for combining
information resources using very heterogeneous IT infrastructures – different hardware, middle-
ware, languages, etc. – cannot be met by such traditional efforts. Starting with the ideas of net-
centric operations and setting up a system of systems, the commercial world, as well as the mili-
tary world, is moving from system components delivering the operationally required functional-
ity, towards service oriented architectures. Within the commercial world, distributed computing
environments operate as a uniform service, which looks after resource management and security
independently of individual technology choices. Grid computing is a means of network com-
puting that harnesses the unused processing cycles of numerous computers to solve intensive
problems that are often too large for a single computer to handle. In other words, grid computing
enables the virtualization of distributed computing and data resources such as processing, net-
work bandwidth, and storage capacity, to create a single system image which grants users and
applications seamless access to vast IT capabilities. Just as an Internet user views a unified in-
stance of content via the Web, a grid user essentially sees a single, large virtual computer. In
order to access the functionality, services are defined based on common open standards and
bridge the gap between the heterogeneous worlds of different languages, middleware solutions,
and hardware. The authors perceive web services to be currently the strongest candidate for a
technical solution to instantiate a service-oriented architecture.
This trend can be observed in the military world. Following the ideas of net-centric warfare (Al-
berts and Hayes, 2003), future military operations will be characterized by the seamless sharing
of information and other resources. The technical backbone enabling this vision will be the
Global Information Grid (DoD, 2002), which will be implemented using the Internet Protocol
version 6 as the technical baseline. It will establish a service-oriented architecture of military
services, from command and control to modeling and simulation, supporting the soldiers in all
relevant military operations.
The real potential of service oriented architectures lies in the possibility to compose services and
to orchestrate their execution, thus enabling new functionality compositions to fulfill the current
often changing user requests within an ongoing operation. Information must be exchangeable
between all composed services in a meaningful manner, i.e., not simply exchanging bits and
bytes, but ensuring the interpretation of data in a consistent way leading to the same information,
knowledge, and ultimately awareness within the services and their users; each service has to

77

know what data is located where, the meaning of data and its context, and into what format the
data has to be transformed to be used in respective services composed into a distributed applica-
tion within the overall system. To generate the answers to these questions is the objective of data
administration, data management, data alignment, and data transformation. These can be defined
as the building blocks of a new role in the interoperability process: Data Engineering (Tolk,
2004). The composing terms are defined as follows:
Data Administration is the process of managing the information exchange needs that exist be-
tween the services, including the documentation of the source, the format, context of validity,
and fidelity and credibility of the data. Data Administration therefore is part of the overall in-
formation management process for the service architecture. Data Management is planning, or-
ganizing and managing of data by defining and using rules, methods, tools and respective re-
sources to identify, clarify, define and standardize the meaning of data as of their relations. Data
Alignment ensures that the data to be exchanged exist in the participating systems as an infor-
mation entity or that the necessary information can be derived from the data available, e.g., using
the means of aggregation or disaggregation. Finally, Data Transformation is the technical proc-
ess of aggregation and/or disaggregation of the information entities of the embedding systems to
match the information exchange requirements including the adjustment of the data formats as
needed.
Model based data management uses a reference model to capture the planning, organizing and
managing of data. Instead of mapping point-to-point, the information exchange requirements of
a service are mapped to a common information exchange reference model, which can be seen as
the ontology of the application domain.

C2IEDM
In 1978, NATO’s Long-Term Defense Plan (LTDP) Task Force on C2 recommended that an
analysis be undertaken to determine if the future tactical Automatic Data Processing (ADP) re-
quirements of the Nations (including that of interoperability) could be obtained at a significantly
reduced cost when compared with previous approaches. In early 1980, the then Deputy Supreme
Allied Commander Europe initiated a study to investigate the possibilities of implementing the
Task Force’s recommendations. This resulted in the establishment of the Army Tactical Com-
mand and Control Information System (ATCCIS) Permanent Working Group (APWG) to deal
with the challenge of the future C4I systems of NATO. The ATCCIS approach was designed to
be an overall concept for the future command and control systems of the participating nations.
One constraint was that each nation could still build independent systems. To meet this require-
ment, ATCCIS defined a common kernel to facilitate common understanding of shared informa-
tion. In 1999, ATCCIS became a NATO standard with the new name Land Command and Con-
trol Information Exchange Data Model (LC2IEDM). In parallel to this, the project managers of
the Army Command and Control Information Systems (C2IS) of Canada, France, Germany, It-
aly, the United Kingdom, and the United States of America established the Multilateral Interop-
erability Program (MIP) in April 1998. By 2002, the activities of LC2IEDM and MIP were very
close, expertise was shared, and specifications and technology were almost common. The
merger of ATCCIS and MIP was a natural and positive step. LC2IEDM became the data model
of MIP. Finally, in 2003 the name was changed to Command and Control Information Exchange
Data Model (C2IEDM).

78

There are two application domains for the C2IEDM within NATO: Data Management and In-
formation Exchange. The NATO Data Administration Group used the C2IEDM to map all in-
formation exchange requirements between the national command and control systems to it in or-
der to ensure semantic (What do the data mean?) and pragmatic (What are the data used for?)
interoperability between the systems. The MIP data managers will continue this task after the
merger between MIP and C2IEDM is finished. MIP also uses the C2IEDM to exchange data
between national command and control systems in order to foster sharing information and gain a
common understanding on what is happening on the battlefield. To this end, the national sys-
tems establish data translation layers mapping their internal data presentation to the data ele-
ments of C2IEDM for information exchange with the other systems.
A technical view on the data model goes far beyond the scope of this paper, as C2IEDM com-
prises data elements describing a common vocabulary consisting of 176 information categories
that include over 1500 content elements. In order to cope with these needs, C2IEDM is divided
into a Generic Hub comprising the core of the data identified for exchange across multiple func-
tional areas. It lays down a common approach to describe the information to be exchanged and
is not limited to a special level of command, force category, etc. In general, C2IEDM describes
all objects of interest on the battlefield, e.g., organizations, persons, equipment, facilities, geo-
graphic features, weather phenomena, and military control measures such as boundaries. In ad-
dition to this, special functional areas are defined extending the Generic Hub under national re-
sponsibility to cope with information exchange needs of national concern. A tutorial on
C2IEDM is given in (Loaiza, 2004). The complete data model documentation and additional
information is available on the Internet (MIP, 2004).

C2IEDM for Intelligent Agents
The use of C2IEDM for intelligent agents to collaborate and support within the Global Informa-
tion Grid is already presented in (Pohl, 2004). The authors share this view and are motivating
this as follows: The application of the Extensible Mark-up Language (XML) enabled a new
level of interoperability for heterogeneous IT systems. However, although XML enables separa-
tion of data definition and data content, it doesn’t ensure that data exchanged is interpreted cor-
rectly by the receiving system. A common reference model defining the XML tag sets and the
structure is needed to ensure meaningful interoperability. For military operations, the C2IEDM
has the potential to become such a reference model. Intelligent agents can use both approaches.
C2IEDM structured in XML schemas can become the “language” spoken by the agents and used
to communicate between agents and services. As the operational use is also part of the C2IEDM
agreements, even pragmatic interoperability can be reached; the C2IEDM becomes an ontologi-
cal layer for the GIG. The ultimate use is that the combination of services, agents, and the com-
mon ontology enables a quantum leap in command and control quality, as described in (Alberts
and Hayes, 2003): When data are put into context, the result is information; applied information
in form of procedural access leads to knowledge; and knowledge applied to analyses leads finally
to awareness. When the text based messages where replaced by a common operating picture, we
stepped up from data to information. The introduction of modeling and simulation services in-
troduces procedural knowledge. If intelligent software agents can now use these services and
map them to observations of the real world, they can support the analyses of military experts.

79

Hence, the command of control systems incorporating agents, services, and a common ontology
can even support awareness, which traditionally is seen in the cognitive domain only.

Summary
Service-oriented architectures are evolving rapidly. In order to make better use of the services
delivering the necessary functionality, intelligent agents are required. The agents need to make
sense of the services functionality, their use of data, and their behavior. To this end, effective
(metadata has not been mentioned up to the point, why is it mentioned in the summary???) meta-
data and meta-model management is necessary. One of the most challenging tasks in this con-
text is the management of information exchange requirements of services in a way that these
services can be composed and orchestrated with other services during runtime delivering the
functionality as specified by user during the ongoing operation. In the military environment, the
Global Information Grid is the technical backbone. The Command and Control Information Ex-
change Data Model (C2IEDM) is a matured approach for a military ontology in the domain of
command and control. C2IEDM has been proven to be flexible enough to cope with all infor-
mation exchange requirements of services. Technically, the definition of mediation layers to
make this information available to intelligent agents is feasible. XML can be used as a syntax
layer, the C2IEDM definitions can be used for ensuring semantic interoperability, and the
C2IEDM structures and views – which have been agreed to by military operators of the devel-
oping nations – can insure that the pragmatic view, i.e. how the data is used – is aligned as well.

References
Alberts, D. and Hayes, R. (2203); Power to the Edge – Command, Control, in the Information Age;
Command and Control Research Program Publications

Department of Defense (2002); DoD Directive 8100.1: Global Information Grid (GIG) Overarching Pol-
icy; The Pentagon, Washington, D.C.

Loaiza, F. (2004); C2IEDM Tutorial; Proceedings of the 2004 C2IEDM Workshop, Fairfax, VA

MIP (2004); Multilateral Interoperability Programme website; http://www.mip-site.org [last visited June
2004]

Parent, C. and Spaccapietra, S. (1998); Issues and approaches of database integration; Communications
of the ACM; Volume 41 (5), pp. 166 - 178

Pohl, J. (2004); C2IEDM as a Component of the GIG Architecture; Proceedings of the 2004 C2IEDM
Workshop, Fairfax, VA

Spaccapietra, S., Parent, C. and Dupont, Y. (1992); Model Independent Assertions for Integration of Het-
erogeneous Schemas; Very Large Database (VLDB) Journal, Vol. 1 (1), pp. 81-126

Su, H., Kuno, H. and Rundensteiner, E. (2001); Automating the transformation of XML documents; Pro-
ceedings of the third international workshop on Web information and data management; Session: Web
Information Integration, pp. 68-75

Tolk, A. (2004); Common Data Administration, Data Management, and Data Alignment as a Necessary
Requirement for Coupling C4ISR Systems and M&S Systems; Journal on Information & Security,
Vol. 12

80

81

Drill-Down Operator in Information Systems

C. Putonti, B. Czejdo
Loyola University

New Orleans, La. 70118, USA
czejdo@loyno.edu

M. Baszun
Warsaw Technical University, Warsaw, Poland

e-mail: baszun@imio.pw.edu.pl

J. Czejdo
Edinboro University of Pennsylvania

Edinboro, Pa. 16412, USA
jczejdo@edinboro.edu

Abstract

The decision-making process very often requires the ability to “drill down data” across
different subject areas and dimensions. Data warehouses typically include this feature;
however the implemented drill-down operators do not have enough flexibility. In this
paper, we consider the problem of generalization of the drill-down operator for an
information system. We introduce the concept of a general aggregation graph that is a
good basis for defining all options for the drill-down operator. The general aggregation
graph can be reduced to obtain the personalization graph that is specific for a user. This
personalization graph allows for a customized drill-down operator.

Keywords

information system, drill-down operator, aggregation, data warehouses, personalization

1. Introduction

The proper infostructure is needed for rapid and accurate decision-making process. This
process can be significantly improved when an information system allows for a
convenient traversal of multi-level data by a human user or a software agent. In a limited
way this function is accomplished in data warehouses (Bischoff et al.1997, Gupta et al.
1995, and Widom 1995) by a drill-down operator. Typically this feature falls short of its
potential. Drill-down operators usually restrict the user, limiting the possibilities of
different views. The effective use of such an operator can be improved if all options are
available to the user and information about these options is clearly presented to the user

82

(Czejdo 2000). Additionally, personal options need to be automatically or manually
specified as a priority list.

In this paper, we discuss the theoretical aspects and implementation of a personalized
drill-down operator. We first introduce the concept of a materialization graph. The
materialization graph includes fact table and the set of summary tables included to
improve the performance of key applications [Czejdo 2000]. The fact table and all of its
possible aggregated views are called the general aggregation graph. The materialization
graph is a subset of the general aggregation graph. The general aggregation graph can
define main options for the drill-down operator. By selecting the options relevant for a
specific user or a group of users, a personalization graph can be created. This graph also
addresses security problems by restricting some users from selected options.

In addition we discuss how the drill-down operator can be extended and applied to other
information systems. We describe the implications of subclass hierarchy and recursive
relationships for the general aggregation graph.

This paper is organized as follows. In Section 2, we describe a star schema on the
example of the TurboMachine Company, defining various summary tables that could be
included in the data warehouse. In Section 3, we extend a star schema to include
subclasses and recursive relationships. Section 4 presents sample queries for the general
aggregation graph and the development of the drill-down operator. Section 5 provides
examples of the TurboMachine Company illustrating a portion of a flexible drill-down
operator. In Section 6, the process of developing a personalization graph and refining a
drill-down operator is discussed.

2. Aggregation graph for a star schema

Let us consider a data warehouse for the TurboMachine Company that has several
branches with separate databases. Each branch lends machines to other companies (other
companies referred to here as locations) and collects (usually once a week) the leasing fee
based on the meter describing the extent of use of each machine.

The data warehouse schema for the TurboMachine Company is a relatively typical star
schema as shown in Figure 1. The model includes dimension tables: Machine, Location,
and Time, and a fact table, T11. The role of each table is as follows. Machine contains
and keeps records of the information for a specific machine. Location contains the
information about each company which has/had leased a machine. Here, we assume that
Time is only a conceptual table since all time attributes can be identified in the fact table
T11.

T11 has a log of all collections made at a location for a date and for a specific machine.
T11 has five key attributes LNumber, Year, Month, Day, MID referred to also as index

83

attributes. The additional attributes are called aggregate attributes. In our example, for
simplicity, we have only one aggregate attribute Money.

Very often, the performance of a data warehouse with only one fact table is not
acceptable. Summary tables need to be introduced in addition to the main fact table T11
in order to improve performance. Therefore, it is important to develop and follow some
rules in the design of a data warehouse with frequent aggregate queries. Let us first look
at an example of summary tables T23, T24, T35, T36, and T43 as shown in Figure 2.

Fig. 1. The initial star schema for the TurboMachine data warehouse.

The additional summary tables are obtained by grouping T11 by its various index
attributes. Table T23 is obtained by grouping T11 by index attributes LNumber, Year,
Month and Day, and aggregating Money to obtain SumOfMoney.

CREATE TABLE T23 (LNumber, Year, Month, Day, SumOfMoney) AS
SELECT LNumber, Year, Month, Day, SUM(Money)
FROM T11
GROUP BY LNumber, Year, Month, Day;

Similarly we can create table T24 by grouping T11 by index attributes LNumber, MID,
Year and Month, and aggregating Money to obtain SumOfMoney.

T1
LNumber
MID
Year
Month
Day
Money

Machine
MID
SerialNumber
Description
Category
PurchDate
Cost
Life
Depreciation
ClickPrice

Location
LNumber
Name
StreetAdd
City
State
Zip
Contact
Phone
Taxes
Sdate
TargetShare
Rnumber
AltAdd
Group

Time
Year
Month
Day

84

Fig. 2. Materialization graph for the TurboMachine data warehouse.

R(MID)

T11
LNumber
MID
Year
Month
Day
Money

Location
LNumber
Name
StreetAdd
City
State
Zip
Contact
Phone
Taxes
Sdate
TargetShare
Rnumber
AltAdd
Group

Machine
MID
SerialNumber
Description
Category
PurchDate
Cost
Life
Depreciation
ClickPrice

Time
Year
Month
Day

T23
LNumber
Year
Month
Day
SumOfMoney

T36
LNumber
MID
Year
SumOfMoney

T24
LNumber
MID
Year
Month
SumOfMoney

T35
LNumber
Year
Month
SumOfMoney

R(Day)

R(Day)

R(MID)

R(Month)

T43
LNumber
Year
SumOfMoney

R(MID)R(Month)

85

CREATE TABLE T24 (LNumber, Year, Month, MID, SumOfMoney) AS
SELECT LNumber, MID, Year, Month, SUM(Money),
FROM T11
GROUP BY LNumber, MID, Year, Month

The next level (third level) tables can be created from table T11 from the first level or
from some already computed tables from the second level if the aggregate operator is of
the type SUM, COUNT, etc. For example, to create table T35 we can use table T11, T23,
or T24. If we choose table T24 then we need to group T24 by the index attributes
LNumber, Year and Month, and aggregating Money to obtain SumOfMoney.

Fig. 3. General aggregation graph of the TurboMachine data warehouse

R(LNumber)
R(Day)

T22

R(Day)

R(Day)

R(MID)

T11

T23

T35

T24

T36

Location

Machine

Time

R(MID)

R(Month)

R(Month)

R(Year)

T43

R(MID)R(Month)

R(Month)

T25

T51

T21

T61

R(LNumber)

R(Year)

86

CREATE TABLE T35 (LNumber, Year, Month, SumOfMoney) AS
SELECT LNumber, Year, Month, SUM(SumOfMoney),
FROM T24
GROUP BY LNumber, Year, Month

In a similar manner, we can create tables on all higher levels. This model offers four
levels of granularity. At a level 1 (lowest level), the granularity is the finest; there are
many records due to the fact that each is unique by a specific date. When these records
are summarized, the level of granularity is coarser. For example T24, a monthly
summary, is at a higher level then T11 since its granularity is coarser. Furthermore, T36
and T43 are even higher. In general, coarser levels of granularity do not require as many
records to be stored. Transformation of a table from a lower level to a higher level is
accomplished by grouping by all but one index attribute. Since during this operation the
singled out index attribute is removed, we will refer to this operation as R with the
appropriate argument, what is also shown in Figure 2.

The schema of the TurboMachine Company uses the SUM aggregate to add the amount
of money collected. Other aggregates, such as MIN, MAX, AVG, etc, should also be
considered. The mathematical definition of MIN, MAX, and AVG are very different
from SUM. A summation is possible on quantities that can either be one single instance
or a sum of instances. It is not necessary to differentiate between the two. Minimums,
maximums, and averages require the computation to be made for single instances.

For example, if the view of the year and the average amount of money is drilled down to
the year, location, and the average amount of money, the derivation of this quantity
requires the base table, T11. An average requires the amounts collected as well as a
count of each collection. This is recorded in T11. In order to create each table, the query
generated must be from T11.

CREATE TABLE T43(LNumber, Year, AvgOfMoney) AS
SELECT LNumber, Year, AVG(Money)
FROM T11
GROUP BY LNumber, Year

When aggregates other than SUM are used, a differing approach is necessary to create
tables and generate views. Instead of aggregating from the highest possible table, the
aggregation must be made from the base table, T11. Attributes of dimensions such as
Location and Machine can be also used for aggregations resulting in the new nodes will
be added to the aggregation graph. For example, in the Machine table the attribute
Category can be used for aggregation. Consider that Category has two values, i.e., Video
and Skill. Video refers to electronic video games and Skill refers to games such as pool,
foosball, or air hockey.

87

3. Aggregation graph for a schema with subclasses and recursive
relationships

By including aggregations by dimension attributes the number of nodes in aggregate
graph increases. Figure 4 is the fragment of Figure 3, which takes into account the
possibility of aggregation by the dimension attribute Category.

Fig. 4a. Fragment of a graph with aggregates based on subclasses.

The same approach can be used when we introduce the subclass concept. For example,
Location and Machine have been treated as one class in the creation of the TurboMachine
Company data warehouse schema, Figure 2. However, either one could consist of
subclasses. The Machine table can divided into two separate classes, i.e., Video and
Skill.

Fig. 4b. Fragment of a graph with a recursive relationship.

T23
LNumber
Year
Month
Day
SumOfMoney

R(MID)
T11
LNumber
MID
Year
Month
Day
Money

Location Machine

Time

T23 Category

Machine
MID
SerialNumber
Description
Category
PurchDate
Cost
Depreciation
ClickPrice
IsComponentOf

88

We encounter slightly different problems when a recursive relationship is present. For
example, let us assume that each machine can contain other machines as is shown in Fig.
4b. The new attribute IsComponentOf is a foreign key defining the recursive relationship.
In such situation we can create an explicit hierarchy of components such as level 1, 2, etc
and build the aggregation graph based on such hierarchy.

4. Queries and Drill-Down feature

Each query can be associated with the specific node of a general aggregation graph. For
example, let us consider a sample query Q35: “Find names for locations and the sum of
money they made in December 1999”.

SELECT Location.Name, SumOfMoney
FROM T35, Location
WHERE Location.LNumber=T35.LNumber
AND Year = 1999
AND Month = ‘December’;

This query can be associated with the summary table T35 and therefore was called Q35.
Similarly, sample query Q36: “Find machine categories for all machines that made more
than $5000 in 1999 while being in location with location number 234”, shown below is
associated with table T36.

SELECT Machine.Category
FROM T36, Machine
WHERE T36.MID = Machine.MID
AND Year = 1999
AND LNumber = 234
AND SumOfMoney > 5000;

Also sample query Q51: “Find names of locations that made in their lifetime more than
$1000000”, shown below

SELECT Location.Name
FROM T51, Location
WHERE Location.LNumber=T51.LNumber
AND SumOfMoney > 1000000;

is associated with table T51. If the tables T35, T36, and T51 were available, then,
obviously, the execution of the above queries would be much quicker. If these tables
were not available then the query processing would require grouping. Generally, we
assume that either the table exists or that the appropriate view is defined. For example let

89

us assume that table T51 is not present and that the view is defined based on available
tables in Figure 2, as shown below

DEFINE VIEW T51(LNumber, SumOfMoney) AS
SELECT LNumber, SUM(SumOfMoney)
FROM T43
GROUP BY Year;

Fig. 5. General drill-down graph for TurboMachine data warehouse.

The general aggregation graph is crucial to the development of the drill-down operator.
It can be easily converted to drill-down graph as shown in Figure 5. Each drill-down

D(LNumber)

D(Day)

T22

D(Day)
D(Day) D(MID)

T11

T23

T35

T24

T36

Location

Machine

Time

D(MID)

D(Month)

D(Month)

D(Year)

T43

T25

T51

T21

T61

D(LNumber)

R(Year)

D(Month) D(MID)

90

operation is denoted by D(A) and has a single argument, A in general. The drill-down
operation is the opposite of the aggregation that removes an index attribute. Here,
instead, the table is expanded and the attribute A is added to the higher level table.
Figure 5 shows the general drill-down graph. This graph depicts all possible groups of
views corresponding to all index attributes not present at this level.

5. Implementation of drill-down operation

The use of the flexible drill-down operator can be illustrated by using the Microsoft
Access database created for the TurboMachine data warehouse. The general aggregation
graph defines multiple possibilities for the drill-down operator, but here only two
possibilities available from T43 will be considered. These two possibilities correspond to
the fragment of the drill-down graph shown in Figure 6.

Fig. 6. Fragment of a drill-down graph.

Two different methods of drilling down will be considered. First, drilling down will be
accomplished using a one record selection. Multiple record selections will be discussed
later.

Fig. 7. T43 view.

The T43 table would be accessible through a form. Figure 7 is a sample form of the T43
table as well as the query selecting the view. To execute the drill-down operator in our

T43
D(Month) D(MID)

T35 T36

91

Access application, first, the argument for the drill-down operator needs to be specified
from the given list.

More specifically, when selecting one record, such as the first record LNumber 105961
for 1993, a menu box with the options would appear. Those options include viewing
monthly summaries for this location and year (T35) or viewing yearly summaries for all
machines at this location for this year (T36). The user has flexibility in choosing the path
he or she desires.

Fig. 8. T35 view.

If the user were to choose to view the monthly summaries for the LNumber 105961 in
1993, that record would be selected and the drill-down operator with the option for the
attribute Month (T35) would be chosen, resulting in the view shown in Figure 7. Here for
simplicity we assumed that data is available only for March and therefore only one record
is displayed.

The view shown in Fig. 8 is obtained by constructing the SQL query with the WHERE
clause “LNumber = 105961 AND Year = 1993” as follows.

SELECT LNumber, Year, Month, SumOfMoney
FROM T35
WHERE LNumber = 105961 AND Year = 1993

When the user made the selection to view the monthly summary, by use of drill-down
operator with the attribute Month, a new form was opened. This form is dynamically
defined by the query that is selected from the menu bar. If the user wished to drill-down
from this view, another set of arguments for drill-down operator would be given in the
menu: {Day, MID}.

Returning to Figure 7, let us choose another menu option. The next query should be
generated by using the same condition “LNumber = 105961 AND Year = 1993” but
different base table T36 as shown below:

92

SELECT LNumber, MID, Year, SumOfMoney
FROM T36
WHERE LNumber = 105961 AND Year = 1993

This query when executed would find all records with this same LNumber and year and
display the results of this query in a new form shown in Fig. 9.

Fig. 9. View of T36.

Using the general aggregation graph, the set of many possible options from any one node,
the queries associated with each selection, and the result could be determined.

It is valuable to have the drill-down operator able to drill down on several records as well
as just one. Detailing a set of records may be more useful then just one record. By
having both options, the flexibility of the operator increases. Selecting multiple records
generates SQL statements similar to those used when querying one record. The
following examples will also consider the drill down from T43 to T35 and T36 as
depicted in Figure 6. The creation of Figure 7 still utilizes Q35. This query will be the
basis for which the following queries will be developed. The values of the fields for the
records selected will be appended to Q35 as conditions. The following examples will
consider that all four records in Figure 7 are selected.

From T43 to T35, the drill-down parameter is Month. The fields LNumber and Year are
the two fields defining the conditions for the drill down. Each record selected as a
conditional statement, LNumber = “value” AND Year = “value”. Therefore, four
statements of such a structure will be appended to the second query using the OR
operand.

SELECT LNumber, Year, Month, SumOfMoney
FROM T35
WHERE LNumber = 105961 AND Year = 1993
OR LNumber = 105961 AND Year = 1994
OR LNumber = 548741 AND Year = 1995
OR LNumber = 670582 AND Year = 1999

93

Similarly when the drill-down parameter equals MID, viewing the yearly summaries for
all machines at the selected location(s) for the selected year(s), the conditional statements
are appended to the query using the OR operand.

SELECT LNumber, MID, Year, SumOfMoney
FROM T36
WHERE LNumber = 105961 AND Year = 1993
OR LNumber = 105961 AND Year = 1994
OR LNumber = 548741 AND Year = 1995
OR LNumber = 670582 AND Year = 1999

Using the above method of drilling down on several records provides a different view of
the data. This functionality makes the operator more flexible.

6. Development of personalization graph

The general drill-down graph, shown in Figure 5, includes all possible views of the data
stored in the data warehouse. Personalization of this graph is necessary for several
reasons. First of all, not all nodes of the general aggregation graph present useful or
logical data groupings. Therefore, those nodes that do not provide a valid detail of the
data should not be provided as options for the user to view. Secondly, the wider the
scope of possibilities for drilling down, the more complicated the process can get. By
confining the user or group within the area of the data warehouse most useful to them, the
likelihood of unnecessary and costly processes is reduced. Additionally, security issues
can be more systematically addressed within this controlled access.

The general drill-down graph offers many possibilities of personalization. The
personalization graph is created on the base of a subset of nodes from the general drill-
down graph. Figure 10 shows an example of a personalized graph. It can extend beyond
the materialized graph as also shown in Figure 10. T61, T51, and T52 are not included in
the materialized graph but are views that can either be created or derived from existing
tables. The shaded portion of Figure 10 includes those nodes of the personalization graph
that are contained in the materialization graph.

There is another important implication for using personalized drill-down graphs. Analysis
of a complete set of personalized drill-down graphs can aid in determining the need for
materialization of some views. For example, if many personalized drill-down graphs
would contain T52 node then it might be considered to materialize that table.
Determination can be done using similar procedures to those described in the literature
[Czejdo 2000].

94

Fig. 10. Personalized Graph

7. Conclusions

In this paper, we considered the problem of generalization of the drill-down operator for
an information system. We introduced the concept of a general aggregation graph that is
a good basis for defining all options for the drill-down operator. By reducing the scope
of the general aggregation graph, a personalized graph, specific to a user(s) is developed.
When the personalized graph is examined and the nodes included in its scope are defined,
the functionality of the drill-down operator is determined. This graph represents the
capabilities of a flexible drill-down operator.

References

Bischoff J. and Alexander T. (1997);Data Warehouse: Practical Advice from the Experts.
New Jersey: Prentice-Hall, Inc.

Czejdo. B, Taylor M. and Putonti C.,(2000); “Summary Tables in Data Warehouses”.
Proceedings of ADVIS’2000.

Gupta A., Harinarayan V., and Quass D. (1995); "Aggregate-Query Processing in
Data Warehousing Environments", Proceedings of the VLDB.

Widom J. (1995); “Research problems in data warehousing", Proceedings of the 4th
Int. Conf. CIKM.

D(Year)

D(Year)

T35

T52T51

T43

T36

T61

D(LNumber)

D(Month)

D(MID)

D(LNumber)

Materialized

95

Section 3:

Knowledge Management Applications

96

97

An Agent-Based Decision Support Environment in Collaboration Platforms

Dr. Uwe Forgber, Tim Kalbitzer

conject AG
Munich, Germany

1 Abstract

Today, web-based collaborative systems are mostly limited to the direct support of human
actions such as document exchange, communication and process management. However,
complex problems do not necessarily have to be solved exclusively by humans but instead by a
careful combination and interaction of human and software-based collaborators. This creates
high requirements on both the structure of knowledge representation within a given collaborative
environment and the in-depth definition of domain specific agents and their underlying business
logic. Presently, such prototypical solutions exist for the management of transport corridors, the
loading of cargo ships, and the design of buildings.

This paper discusses the current development and future vision of conject – a German software
service provider focusing on collaboration technology for the AEC (Architecture, Engineering
and Construction) and EDA (Electronic Design Automation) industries. The statements and
examples are based on conject’s product roadmap and market perception that in dynamic markets
with shorter product life cycles flexibility and real time decision making are more critical success
factors than routine task optimization (Gareis 2003). With an increasing demand on flexibility
and more complex products (e.g. buildings or software projects) there is a big need to hide
complexity from project participants and achieve shorter ramp-up times.

2 Keywords

web-based collaboration; collaborative agents; mobile collaboration; agent-based decision
support systems.

98

3 Introduction

Today, web-based collaboration systems are mainly focusing on project-based exchange of
documents and the traceable communication of geographically-dispersed project participants.
Among all industries project owners and participants are just learning to implement and utilize
adequate organizational structures and project processes addressing the new opportunities of
project collaboration.

However, project collaboration and management still require an enormous amount of tedious
tasks and sub tasks (e.g. workflow control, reporting, milestone assessment) to be accomplished
by human experts in order to keep the project in time and budget. Process automation – a desired
relief – can only be achieved by utilizing primitive workflow engines capable of tracing single
user tasks (Schmid and Stanoevska-Slabeva 1998).

As almost all project work is accomplished within a digital environment, process automation,
machine based reasoning and decision making can now be easily addressed. Next generation
collaboration environments already include basic structures to host domain-specific software
agents for process automation and decision support. Based on two examples in the AEC industry
this paper outlines the continuing migration process from manually controlled collaborative
environments to agent-based decision support platforms within next generation collaboration
systems.

4 Collaborative Agents

What are computer-based software agents anyway? Based on their capability to understand any
given problem, they commonly collect data and support the reasoning and decision making
process in a typically very narrow domain such as matchmaking (e.g. consumer area), command
and control or complex, object-centred planning and execution. They can apply domain-specific
knowledge on a given problem represented either by a product modelling approach (e.g. object
model of a building) or a simple process model representing interdependencies of several tasks
over time.

Today, most software agents are embedded in a process model and typically act on a stand-alone
basis. Integrated agent environments based on object-based knowledge representation and
reasoning are still in their early stages but are rapidly emerging e.g. in scientific and military
areas of application (Pohl 2001).

So far, state-of-the-art web-based collaborative environments lack the integration of software
agents. However, since their areas of application (AEC, EDA etc.) are subject to high
decomposition in practice, it is highly inviting to apply software agent concepts in this field. In
particular, since user communities of collaboration systems are growing exponential (as line
organisations vanish in favour of project-oriented organisations), a wave of automation in
p roces s managemen t and dec i s ion mak ing can be expec t ed .

99

5 A product roadmap as a basis for integrating software agents

While a lot of companies in the AEC industry in Germany have been struggling over the past few
years, many companies were founded to offer especially to this industry a sound solution for
collaboration known as internet-based project management. Compared to the overall
developments in this industry, these companies have shown remarkable performance. The
success of using collaborative systems for conducting construction projects led to the observable
ambition of integrating other existing IT solutions and services into the collaboration platform
(e.g. cost control, facility management, CAD (Computer-Aided Design) or reprography
services).

In order to become an industry leader, the main challenge for collaboration providers is to
develop a platform on which present and future solutions can be hosted. As an example, figure 1
and 2 give an overview of the present products and the architecture for an integration platform of
conject, a leading German collaboration provider.

conject NG (Integration platform): J2EE-Technology with Multi-Channel and
Webservice Architecture

Internet-based
Project Management

(IBPM)

Cost Control
(APSIS)

> Project Management
> Communication
> Document

Management

> Web-based

> ASP

> J2EE

> Cost Control
> Investment Control
> Resources

Management
> Commercial FM

> Windows Client

> Client/Server with
Web-Frontend

> PowerBuilder

Solutions
(selection)

Architecture

Operation

Technology

CAFM
(TechnoSoft BuiSy®)

> Technical FM
> Infrastructural FM
> Commercial FM

> Windows Client

> Client/Server with
Web-Frontend

> PowerBuilder

Figure 1: Overview of conject’s products (Source: conject , 2004)

100

conject webapplication
framework

(JSP, Struts, Taglib)

conject webapplication
framework

(JSP, Struts, Taglib)

Java APIJava API SOAP APISOAP API
collaboration services (EJB)collaboration services (EJB)

conject
collaboration

kernel

conject
collaboration

kernel

persitence services (JDO, JDBC, JTS)persitence services (JDO, JDBC, JTS)

database, file systemdatabase, file system

API ExtensionAPI Extension

3rd Party
Kernel

Extensions

3rd Party
Kernel

Extensions

conject
webapp
conject
webapp

3rd Party
Middle
ware

3rd Party
Middle
ware

3rd Party Application3rd Party Application

Technical
Base

Services
(JAAS,
Config,
Error

Handling,
I18N)

Technical
Base

Services
(JAAS,
Config,
Error

Handling,
I18N)

D
o

cu
m

e
n

t
M

a
n

a
g

e
m

e
n

t
D

o
cu

m
e
n

t
M

a
n

a
g

e
m

e
n

t

P
ro

je
ct

C
o

n
tro

llin
g

P
ro

je
ct

C
o

n
tro

llin
g

Figure 2: Architecture of conject’s next generation product(s) (Source: conject 2004)

The vision of many collaboration providers now is to offer software and consulting services for
project-oriented organisations. In dynamic markets companies are forced to be highly flexible
and to learn quickly and effectively in order to meet the necessary demands. Consequently, a lot
of companies are abandoning traditional business lines and transforming themselves into project-
oriented organisations. To successfully transform themselves these companies need
organisational change and development on the one hand and a suitable IT system on the other
hand.

6 Supporting collaborative work with software agents

Presently, the main advantage of internet-based project management platforms is that all project-
related information is stored within one system. This enables project participants to access all
project data at any time and from any place. It also facilitates the work of software-based
collaborative agents. By adding more information to documents which are relevant for the user
document management systems will change and collaboration platforms will evolve from
document-based systems to database-based systems. The implementation of software agents
helps to reach the next step in process automation and ensures that the desired quality is
achieved.

Currently, actions on collaboration platforms are performed mainly by human hand. There is
hardly any support by automated processes like process agents. The challenge for software
companies designing collaboration systems now is to add intelligence to their future program
releases by implementing software-based collaborative agents (Figure 3).

101

Release X Release X +1 Release X + 2 …

> Standard Project
Space

> Full Text Search
> XML Forms

> Reporting Engine
> Dynamic Objects
> Bulk Loader

> Portfolio
Management

> Messaging
> Upload Agent

> Plan
Management

> Rating Agent
> Workflows

Manual Actions

Intelligent Agents

Figure 3: Addition of intelligent agents to future product releases (Source: conject 2004)

A lot of information and processes offered in collaborative environments are static and not
addressed specifically to the different user groups. Reports about login times, document access,
used space etc. require a high degree of definition efforts and don’t offer dynamic analysis
possibilities. Workflows which are presently the most sophisticated tools for process automation
are also mainly static and immune to ad-hoc changes. A “What’s new?” section that just
highlights the five latest notifications, mails or events doesn’t offer much help to a project
participant. It is more relevant to find out what’s new for your most important documents and
processes.

Simultaneous Work
An important success factor in cross organisational collaboration environments is situation
awareness (Marschall and Ackerson 2004). Two project participants not working together in one
office often do not know that they are working on the same problem and/or document.
Implementing a messenger function that tells both users that they are working on the same
document and that both of them are online will offer valuable help. They can immediately
contact each other, solve the problem and avoid double efforts. The solution can be provided by
two agents who track certain folders and/or documents of their users and compare them with
each other. If they match, the simultaneous working users will be informed by an online-
message.

Another solution to increase the situation awareness can be displayed by colours. The change of
a defined colour spectrum then shows how well the contents of collaboratively working people
match. The colours will be displayed in a cockpit-like environment summarising all relevant
information.

102

Reporting
The starting point for evaluating data is collecting it. Event tracking is a collaboration feature
that is already widely used. A user-specific profile managed by a software agent can match
current events with the user profile and filter the information according to the user’s interest. The
form of notification will then be chosen according to the user’s prioritisation: SMS (Short
Messaging Services) for high priority, e-mails for normal priority and messages within the
collaboration system at the time of the next login for low priority. By subscribing to certain
events of interest and/or configuring search agents all events connected with a document will be
summarised using the pull notification concept, i.e. the user will be provided with the relevant
information automatically instead of searching for it.

Rating of documents will also help to add valuable information about the content of documents.
Agents are then able to determine the value of a document by combining the number of
downloads with the given rating.

Workflows
More flexibility will be given to the presently static workflows by more sophisticated IT support.
Agents offer a higher automated control process of workflows. If there wasn’t any activity from
a workflow participant for a certain time notifications will be sent to deputy, supervisor or other
workflow participants in order to assure adequate reaction times.

7 Sophisticated solutions for software-based collaborative agents

Project Control
Presently, a software system offers a high amount of different reports to analyse the current
project status. The project manager has to generate many of these reports, collect the relevant
data and sum everything up in e.g. a new spreadsheet. This requires a lot of administrative work
within the system before the real task starts: project control.

A software agent offers valuable help when collecting and showing all the relevant data. Cost
data will be collected, aggregated and even visualised in the desired manner. Budgets will be
controlled and overruns can be noticed as soon as possible. The big advantage of agents will be
the control of a whole project portfolio. Here the analysing process is far more difficult as it
contains a much higher complexity. A lot of different people work in different places on different
project tasks. It is always the main challenge in project work to use the people involved to as
high a capacity as possible (and bearable) and guarantee project success. A sophisticated project
agent will find out that a successful project is lacking some resources and will propose solutions
like hiring people from different projects that won’t be that successful or where the missing of a
deadline can be taken into account. In this way, a reporting agent will control earned value
developments on a constant basis and prepare relevant information for human decision making.

103

It is very important to note that the given solutions of a software agent have to be
comprehensible for the project manager. Otherwise, the decision support would be a black box
that nobody could/would trust. Furthermore, these agents should only be assigned with tasks that
they really can handle. There are always so many different basic conditions to consider that can’t
be fully integrated into an agents mind.

Connexion of reprography services
When adding additional services (e.g. reprography services) to collaboration platforms, software
agents can also act as brokering agents. According to parameters like maximum/minimum price,
number, format, material of plans and location of the company these brokering agents will
collect offers of reprography services via SOAP (Simple Object Access Protocol) connections.
This increased transparency in the market will decrease the price for blue printing and also help
the reprography services to plan their capacity and work more efficiently. If a reprography
service uses a brokering agent price negotiations will take place on a digital basis according to
the preliminarily determined price and quantity. The collaboration provider simply offers a web
front end where participating reprography services just have to enter their bids as in reverse
auctions.

8 Technological structure of software-based collaborative agents

The collaboration kernel acts as the “environment” for the software agents. The agents would be
JAVA modules using the collaboration API (Application Program Interface) to retrieve the
information on which they decide to act. The collaboration API offers various ways for agents to
retrieve information. The most important ones are event listeners attached to the currently active
user sessions and the reporting engine. An agent listening to a user session would be able to act
upon certain user actions or to find out, which users (and maybe their agents) are on-line at a
certain point of time. Being implemented as message driven beans, they would be able to
communicate with each other on a XML (eXtensible Markup Language)-based data exchange
protocol. The agents would be able to use point-to-point communication to other known agents
as well as broadcasting channels to post information about their current status or task without
knowing whether there are any interested parties.

Agents are not limited to work only within the collaboration kernel. Using SOAP-based web
services offered by other systems an agent could have access to external knowledge pools like
exchange rates, value added taxes, price of (raw) materials, construction costs etc. Then,
information gathered within the collaboration kernel could be compared with external market
data or be enriched with additional data from the outside.

In this paper the focus lies on process agents that facilitate and control processes because this
will be the next step to integrate agent intelligence to collaboration platforms as described here.
One step further would be to design and implement object-based agents. They have a much
higher complexity and should be described and analysed at another place.

104

9 Conclusion

Web-based collaboration systems are currently advancing in several project-oriented industries
with an exponential scale. They leave process coordination and decision making entirely to their
users. This paper shortly discussed basic concepts and applicable fields of software agent
technology and draws the link to web-based collaborative environments.

Based on two examples, the current development of next generation web-based collaboration
systems (integrating software agent concepts for process automation and decision support) has
been outlined.

Further development of web-based collaboration systems from a task-intensive work bench to a
cockpit-like environment for task specification, decision making and execution is therefore
anticipated.

10 References

Gareis, R. (2003); Management by projects: Specific strategies, structures, and cultures of the
project-oriented company; The Handbook of Managing Projects, Vienna, Austria.

Marschall, M. and D. Ackerson (2004); Building Sustainable Information Systems for Project-
Oriented Cross Organizational Collaboration; Proceedings of the Americas Conference on
Information Systems (to be published).

Pohl, J. (2001); Information-Centric Decision-Support Systems: A Blueprint for
‘Interoperability’; Office of Naval Research (ONR) Workshop hosted by the CAD Research
Center in Quantico, VA, USA.

Schmid, B. and K. Stanoevska-Slabeva (1998); Knowledge Media: An Innovative Concept and
Technology for Knowledge Management in the Information Age; Institute for Media and
Communications Management, University of St. Gallen, Switzerland.

105

Knowledge Sharing, not MetaKnowledge

How to join a collaborative design Process and safely share one’s knowledge

Gianfranco Carrara* Antonio Fioravanti* Umberto Nanni°
gianfranco.carrara@uniroma1.it
antonio.fioravanti@uniroma1.it

umberto.nanni@uniroma1.it

* Dipartimento di Architettura e Urbanistica per l’Ingegneria
° Dipartimento di Informatica e Sistemistica “Antonio Ruberti”

Università degli Studi di Roma “La Sapienza”
Via Eudossiana, 18 - 00184 Roma – Italy

Keywords

architectural design; collaborative design; distributed knowledge bases; metaobject; knowledge
ownership; knowledge privacy

Abstract

The present paper is drawn from an on-going research on collaborative design, which has been
pursued by this Research Unit for a number of years. The proposed model, the resulting system
and its implementation refer mainly to architectural and building design in the modes and forms
in which it is carried out in advanced design offices. The model is actually used effectively also
in other environments. The research simultaneously pursues an integrated model of the:

• structure of the networked architectural design process (operators, activities, phases and
resources);

• required knowledge (distributed and functional to the operators and the process phases).

While several aspects of the process structure were illustrated in the previous Symposium
(Carrara and Fioravanti 2002), the present article deals essentially with the second point of the
model: how the designers, “actors” in the broad sense (according to the ISO-STEP definition,
Wix, 1997) in the design process share their own knowledge and how this can be exchanged
among them (“Sip by sip knowledge” and the “esperanto interface” XML) in the various stages of
its development. As far as the problems involved in the various knowledge bases of the several
actors exchange are concerned, a short illustration of the proposed solution will be given at the
end of the paper.

1. Introduction

In collaborative design support systems the aspects related to the sharing of knowledge and the
way in which it is exchanged involve a number of different problems: database structure,
homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the
representation of the IT datum (Eastman et al. 1997; Eastman 1998; Papamichael et al. 1996;
Kavakli 2001; Rosenmann and Gero 1996; Kim et al. 1997; Pohl, J. et al. 2000; Pohl, K.J. 2002),
the ease with which it can be managed, the possibility of rapid growth, etc. Research is part of

106

the line involving support systems for collaborative design-construction using distributed
knowledge bases. Our System, MetaKAAD, is conceived of as an environment in which
different Intelligent Assistants, hereinafter denoted as IA, talk to each other. They are functional
to the design of a building.

Figure 1. Actors IAs and collaborative architectural design.

The System scheme has been defined in (Carrara and Fioravanti 2001) using knowledge
engineering methods and techniques through a structured set of Intelligent Assistants, each
element of which is composed of an actual knowledge base (KB), inference engine, assembled
database, user interface, graphic primitives (Carrara and Fioravanti 2001). The KB is then
composed of a Technological Domain, Space Domain on the one hand (Carrara et al. 1994) and
Relation Structures1 MetaKnowledge, on the other (such as the MetaKnowledge we will see
below).

Several IAs are immersed in MetaKAAD, each of which may be structured in a different way
according to the actor involved in the phase of design development and to the scientific
disciplines involved. It should be noted that in the collaborative design paradigm the various
actors involved in the design process, although working together closely and jointly on a project
and towards its successful outcome, may be in competition with another project taking place
simultaneously with the first.

This situation emphasizes the central theme of the article, i.e. the aspects to which little attention
has so far been devoted: confidentiality, intellectual property and knowledge security. They
display an essential character in a civil society such as the more restricted environment, of
collaborative architectural design.

1 We have defined the Relation Structures in order to take into account the numerous links between the
Technological Domain and the Environmental Domain and the rules by which we act on these Domains.

107

We deal with knowledge for designers, mainly building architects, in which for reasons of
professional practice and academic tasks, we are deeply involved. One peculiarity of
architectural design resides in the fact of designing single buildings (Eastman, 1999); it may thus
be claimed that in most cases it is an activity aimed at construction prototypes rather than actual
types. This peculiarity is the result of the dynamic relationship between design objectives/means
for attaining them: they influence and modify each other reciprocally (Carrara et al. 1994, pp.
149-150, pp.163-166). This characteristic is gradually spreading through the world of industrial
design and the considerations made here can easily be extended to other sectors. One problem
facing the actors is how to share knowledge with other actors in the design process, but without
leaving the specific knowledge of their own sector to others. Indeed, owing to the very nature of
collaborative design, two conflicting needs must be taken into account: on the one hand, in an
immediate and asynchronous way, all the explanations of the conflicts arising in the course of the
design and construction process; on the other, safeguarding one’s own overall knowledge assets
which may be used simultaneously in another project – contract – construction competition in
which the previous joint collaborators enter into competition with the new ones. How can this be
done?

2. The information exchanged

We envisage possibly tackling these problems via two peculiarities of the software system we are
developing. The first of these was illustrated in the preceding Symposium (Carrara and
Fioravanti 2002) by defining the relationship PDW/ SDW, between Workspace in Private Design
Decisions PWD (inherent in the decisions of the individual design team), and Workspace in the
Shared Design Decisions (inherent in the decisions of all the design teams), SDW for actors in
the design process.

The decisions taken in the "private" design space of a design team or of an actor are closely
related to the type of support that can be provided by a collaborative design system. For example,
pre-set values conforming to the rules, automatic checks performed by activating procedures and
methods, the reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’
conflicts, the creation of new IT objects/ building components, who the objects must refer to (the
‘owner’), the 'situated' aspect (Gero and Reffat 2001) of the IT objects/building components.

2.1. ‘Sip by sip Knowledge’

We have defined the second peculiarity as consisting “in providing only the explanations relevant
to non-respected constraints and/or the procedures activated without any transfer of parts of the
KB from one actor to another: the responses are moved, not the Relation Structures (Carrara and
Fioravanti 2001). This modeling may be defined as “Sip by sip knowledge” in the sense that it is
dispensed in small doses. The mathematical formalism describing this situation is the small “o”,
when a function is valid in a limited field, is a “limited scope” knowledge environment.

In the previous symposium the model was conceived of as affording the actors in the design
process access to other people’s knowledge. Moreover, the formalized knowledge and the
logical-mathematical operators required to manage it were included in the other SKBs. This was

108

done in order to speed up the process, so that on the second request from the same party for
knowledge necessary to the process for that actor at that stage was made available locally. This
had the primary aim of reducing the number of repetitions of roughly similar information
exchanges, and of reducing the bandwidth involved in the transmission. In this procedure little
attention was paid to the needs of privacy, copyright and security.

Our position has changed vis-à-vis that illustrated in the preceding conferences. Information
exchange now takes place remotely using managers that handle that part of the knowledge that an
actor may be interested in.

The new model emerged under the influence of four factors:

• increased demand for security;

• infrastructural development;

• technological progress;

• closer adherence to professional practice.

The first factor is the result of a number of circumstances. The political scenario is now
characterized by instability and precariousness, on-line fraud, web site violation, industrial
espionage. The guarantee of privacy is a priority need of modern society, not so much in the
narrow sense, but as the possibility of using information to construct contexts for presenting it in
which its original meaning is modified.

The second refers to innovation, to the IT infrastructures of the territory which is subject not only
to expansion but also continuous innovation. Moore’s laws predict the doubling of circuit density
every 18 months, those of Nielsen the doubling of connection capacity expressed as bandwidth
per domestic user every 20 months. Today the PCs on the market are equipped with 1 Gbps
network cards and the voice-data backbones are in the order of 10÷20 Gbps. 64 bit processors
will replace the previous generation within the next two years.

The above points are gradually introducing a third factor as economic viability, power, the
spreading of new apparatus, combined with a strong move towards security have led to the
sharing of technologieis such as tunnelling, cryptography, digital signatures, safe internet
connections, the development of safer 64 bit S/W and document copyright.

The fourth factor is perhaps the most significant. It is precisely design practice that reveals that
the greatest obstacle to open and loyal collaboration between teams and individuals is represented
by intellectual property. There is a fear that what has laboriously been learned over time through
experience and research can only too easily and immediately be re-transmitted to and acquired by
others. This represents an obstacle to increasing the number of actors with whom to collaborate,
and design teams tend to be reduced to small groups of collaborators. If it were possible to restrict
the transfer of KBs, the number of potential collaborators would increase.
In actual fact, this problem is easier to contain for a number of regions:

• the actors’ access to information, thanks to the SDW/PDW model, is allowed only
through their respective Perspectives (Carrara and Fioravanti 2002, p. 33, p. 38);

• modification of the objects is allowed only through the principle of the authority of the
objects themselves: Dominus, Owner, User (Carrara and Fioravanti 2002, pp. 39-41);

• not all the information exchanged represents knowledge;

109

• the information physically shared by the actors is not sufficient to infer knowledge from.

The first two points were dealt with in the preceding Symposium. Here we shall examine the third
point. The last one will be illustrated in a subsequent section.

2. 2. Data Knowledge MetaKnowledge

The information exchanged may be catalogued in four sub-sets: Data, Knowledge,
MetaKnowledge.

The first subset, Data, consists of instances of the prototype objects accessible to all the actors
involved in the project in accordance with their respective Perspectives, but are limited to
describing the building entities2 referred to by the various actors. There is no transfer of
knowledge, only dimensional, physical, economic characteristics, etc. There is no explanation, for
example, of why the choice fell on one particular type of door or why it is difficult to relate one
type of window frame to a certain type of building facade.

The second subset, knowledge, at least as we understand it, refers to a more limited knowledge
environment than that exchanged for the building entity considered. Examples of this are: the
dimensional range of construction feasibility of a type of prefabricated wall pane; incompatibility
between the position of beams and air conditioning conduits in one particular point in the
building; an incorrect ratio between window surfaces and illuminated room areas dependent also
on the orientation of the outer surface of the building with respect to the heliothermal axis and its
inclination to the vertical; the ratio between the thickness of the slab and its free span with a
certain type of slab and boundary constraints; control over the minimum distance to travel
towards the first safety exit. This type of information always resides in the IT objects
representing the building entities, both as functions and as procedural attachments, in the
prototype object or in its parent prototype or in a prototype of which it is part. As shown, the
exchanged knowledge refers only to the explanations, the instances thereof, for a given
“situation” or “context”, not the constraints that validate the Requirements and that remain in the
KB prototypes of the respective actors (Carrara and Fioravanti 2003).

The third subset, the MetaKnowledge, refers to a larger PDW knowledge environment than the
previous one and refers to the rules applied to the previously illustrated norms. Here the boundary
conditions of the state of the System are extremely important. They make one design choice
preferable to another. The implementation of the peculiarities of each event and its knock-on
effects and relations to the other objects enrich this part of the KBs which we have defined as
Relation Structures. Indeed they structure the relations among the objects presents in the
Environmental Domain and in the Technological Domain (Carrara and Fioravanti 2001). This is
true only in restricted environments. Indeed it is only the boundary conditions, albeit in a wider
environment, that make one solution preferable to another, and these boundary conditions, which
represent the peculiarity of each situation and that go to make up MetaKnowledge, are not

2 The Building Entities represent a huge field of prototype objects: a building Component, a Relation Structure
among objects, a higher-level Prototype, an assembly sequence, a technical element, an entire building, an activity, a
constraint, a method.

110

transmissible because we must take into account all the events that, when tested against
experience, will lead to a choice.

3. The Proposed Model

In developed systems we consider there are several KBi that act in a set mode (fig. 2) (Carrara
and Fioravanti 2001, §3.2).

Figure 2. The knowledge bases and the entire building.

The running Knowledge Base union set for designing the Entire Building (EB) is constituted by:

Â KB = CKB + Â SKBi + PKBp fi (1)

fi =
=

UU CKBpiKB
p

ni ,1

),(U
p

ni

cpiKB
,1

,,
=

where:
{i Œ Actors | i = 1, n; n variable Œ Phases « Specializations}
CKB = Common Knowledge Base of all actors;
SKBi = Specialist Knowledge Base, peculiar to the i-actor;
PKBp = Project Knowledge Base of the p-project.

It is important to stress that no hypothesis was made about the implementation and the structure
of SKBs, as we think that each actor develops the representation most suitable for his own
problems.

An actor in the process, in order to instance any kind of IT object, after a first verification phase
within his own PDW and the respect of any constraints present, and later goes on to the second
phase of verification, the TEST phase in the SDW, concerning other SKBs. In order to perform

111

such a verification in the previous system, the author would have to add to his knowledge the
knowledge of the new Requirements (Carrara and Fioravanti 2003). Hence new characteristics
would be added and multiplied set-wise in the IT objects of his own SKBi (Carrara and Fioravanti
2002). By so doing however he would acquire the Knowledge of the other actors and thus come
into possession of the intellectual property of others.

From the point of view of the actor modeling knowledge exchanges take place according to the
following scheme: its i-th Specialist Knowledge Base Base evolves in the course of the project,
increasing in t-th time its knowledge in (t-1)-th time by the knowledge of other actors in (t-1)-th
time. This acquired knowledge obviously refers to the characteristics of the objects enucleated by
the intersection sets between its own and the other SKBi (see equation (2)); i.e., the objects of
other SKBs that are not the complement of their i*-th SKB (see equation (3)).

The technique involved in this problem was similar to the one adopted by Rosenman and Gero
(Rosenman and Gero, 1997).

(SKBi*)t = (SKBi*)t-1 U o(SKBi*)t-1 (SKBi)t-1p = (2)

 = (SKBi*)t-1 U o - C (SKBi*)t-1 U
ni

iii

=

≠= *,1

 (SKBi)t-1p (3)

where:
{i Œ Actors | i = 1, n; n variable Œ Phases « Specializations}
(SKBi)t = Specialist KB, peculiar of i-th actor, at t-th time.
C (SKBi)t = Complement of Specialist KB, peculiar of i-th actor, at t-th time.

But now the acquisition is only “virtual”, also in view of the increased speed and availability of
the processing environments, we are defining a System in which control of constraints takes place
in the TEST phase in the others’ IAs and KBs, as the first actor sends to them only the data he has
defined.

After verifying these data at a distance, the other KBs will provide an explanation of why the
proposed solution was accepted or not in that particular situation, providing the rules applied.
In brief, we state that the key concept is to apply and notify knowledge for the single project only
for the instance, i.e. to give the answer for the (single) state of problem of that particular instance
of the “world”, SWD, being dealt with by the actors. In this way no elements are supplied
concerning the general rules governing one’s own knowledge, the SKBi.
The data actors can access, and that are actually shared, the Assembled Data Base, are simple
structured lists: nothing else is embedded.

We are thinking of extending the preceding concept also on the basis of the project knowledge
base, PKBp bringing it inside the SKBi and “virtualizing it”. Indeed, we must bear in mind how
thesystem structure Fig. 3 (Carrara and Fioravanti 2001), now that is has changed, is no longer
conceived of an entity in its own right, physically and logically associated with a project to which
the actors have access, but is a “virtual” PKBp, always associated with the project but resident, as
far as competence is concerned, in the various SKBs of the actors involved. In the present version

112

it is composed of objects, the features of which are partially modifiable by the other actors by
means of editing filtered through the Perspectives and the Principle of Authority. Hence, in a
manner similar to equations (2) and (3) it can be stated:

(PKBi*, p)t = (PKBi*, p)t-1 U o(PKBi*, p)t-1 (PKBi, p)t-1p (4)

 = (PKBi*, p)t-1 U o - C (PKBi*, p)t-1 U
ni

iii

=

≠= *,1

 (PKBi, p)t-1p (5)

where:
{i Œ Actor | i = 1, n; n variable Œ Phases « Specializations}
(PKB i, p)t = Project KB, peculiar of i-th actor, of p-th project, in t-th time.
C (PKBi)t = Complement of Project KB, peculiar of i-th actor, at t-th time.

Figure 3. The structure of IAs and of the EB: different PKB conception in 2001 on the left, and current
one on the right.

4. Architecture of the Proposed Software: MetaKAAD

As stated in the previous sections, we aim at satisfying a general goal of Collaborative
Architectural Design: to integrate the efforts of several actors to produce a project. Each actor
has a specific role and responsibility in the design process, and pursues his/her specific tasks
based on specific roles, expertise and knowledge.

Within this context, we have identified as a target of the research the development of MetaKAAD,
a software architecture dealing with these main issues:

• roles: each actor has a role, focus, responsibilities and goals within the project;

113

• interoperability: each actor involved in the design process has his/her techniques and may
use specific software tools; we want all of them to cooperate in producing the same
project, instead of working on unshared incompatible files;

• consistency: each actor provides a contribution to the design process by either creating
new objects within a project, or modifying or adding “features” (or slot-value pairs) to
existing objects; nevertheless the resulting project may evolve consistently while
concurrent updates are carried out;

• synchronization: there are synchronization rules among the activities carried out by the
actors (e.g., you may not want to design a building without electric cabling, but usually
you will not start the design process from it); on the other hand, when a parallel activity is
allowed , we want that more actors develop their design goals in the same time;

• communication: roles and synchronization rules require communications among the actors
to be generated and managed.

Roles and synchronization rules may change according to the type of project (e.g., you may really
plan to start a project from the cabling requirements). This may happen for all the instance-
project of a given prototype-project. Hence, we want to model at the level of prototype-project
the synchronization rules of all instances of this kind of projects.

The second of these issues, interoperability, raises a common problem in the professional practice
of architectural and building design: any expert wants to use his/her own design tool. Tackling
this problem is a real challenge, due to the different features supported by the design tools of the
various actors. These different representations (sometimes a consequence of intentional choices
of software companies) are often difficult to override, and constitute a practical obstacle towards
the goal of building an actual collaborative design environment.

The consistency issue has difficulties similar to those arising in the field of databases, dealing
with concurrent transactions. Therefore, our choice is to handle the possible concurrent updates
performed by different actors by means of techniques similar to those used in that area. Namely,
we aim at enforcing synchronization and avoid critical updates by means of implicit locking of
objects and features, based on the concept of principle of authority. Implicit means that the actor
must not explicitly handle this issue, which is handled by the tool. In turn, ownership of features
and objects depend on Perspectives defined in the specific prototype-project.

4. 1. The Actor’s Role and the “Perspective”

Each actor involved in the design process has the management of a set of features of the project
(as a special case, the management of some feature may be shared by two or more actors).
Furthermore an actor is interested in some other features. Each actor has an associated
Perspective, which includes two sets of objects/features:

• those of which he/she is the Dominus
• those of which he/she is the User.

On the other side, we can look at the Perspective system as consisting of two functions:
• management: mapping each object/feature to a set of actors (very often, one actor);
• interested_in: mapping each object/feature to a set of actors.

114

Of course, from a practical point of view, the features included in a Perspective are dependent on
the design tools the specific actor is willing to use. This is a powerful mechanism to progressively
extend more and more software tools in the MetaKAAD architecture, provided that the “drivers”
are built. An initial effort in this direction has been started.

5. Research lines and current MetaKAAD XML filters

The project is stored/exchanged using a representation as a XML file: this approach is widely
accepted in any area, and common in the context of architectural design, and has produced
worldwide standardization efforts (e.g., aecXML, IFC) by many organizations (Harold et al.
2002). On the other hand our approach is robust toward the changes of the model (i.e. the chosen
XML representation format), since these do not affect the key features of the system (e.g.
synchronization).

In the Common Knowledge Base, there exists a general XML Data Type Definition (DTD) for
each kind of building, i.e., for each project-prototype. This includes:

• structural properties: the essential features of these models are based on the object-
oriented models within KAAD3;

• the roles and Perspectives within the prototype;
• a representation of the synchronization rules.

These models are integrated by adding new features from other software tools, used by experts in
complementary fields: at the moment we are collaborating with Civil Engineers.

A project consists of a XML file, available in the “shared” design space. This is an instance of a
given project-prototype, and incorporates objects and features produced by several actors. When
an actor imports a given project into his/her workspace, the global XML file is “filtered” by his
Perspective. In other words, only the features that are managed by or of interest in the
corresponding role in the design process are activated.

After an actor has modified a project with his/her preferred software tool, a new version of the
project (i.e., a new XML file) is exported into the SDW area, and the other actors may import the
new version.

As a first step toward these goals, in the current prototype of MetaKAAD, we focused mainly on
the interoperability step, consisting in modeling and exchanging projects among various actors,
each using a specific software tool.

The interoperability among tools operating – in principle – toward a convergent design target
have at least two distinct issues:

• semantics: the tools actually cope with substantially different concepts
• format: different choices in the representation can make it impossible to exchange files

between two software tools, even if both essentially manage the same concepts.

We have dealt with both facets of the problem. Let us consider a simplistic (but quite general)
scenario, where two actors in collaborative design over the same project P use two design tools:

3 An existing software system developed at Department DAU (Carrara and Fioravanti 1995).

115

an architect, Arch, and a civil engineer, CEng, respectively using the tools TArch and TCEng, fig.4.
Each of the design tool Ti (from now on Ti can be either TArch or TCEng) has an internal
representation (semantics and format); this must be used when a file is stored and possibly
exchanged across the network between different Actors, i.e., between different installation of Ti.
From a semantic point of view, the representation Pi contains only the features of the Perspective-
a.

Let us call PArch and PCEng (or, in general, Pi) the internal representations of the same project P
inside the tools TArch and TCEng respectively. Furthermore, there exists a XML schema (or DTD)
for each of the tool TArch and TCEng : DTDArch and DTDCEng, respectively.

Figure 4. Data transformations within MetaKAAD.

When the architect exports its project PArch by means of the tool TArch, it is transformed in PXArch:
this is an XML representation using the XML format DTDArch. To export/import files from/to the
tool TArch , we need two “drivers”: Arch_to_XArch, and XArch_to_Arch. Note that these drivers
operates a syntactic transformation: all the information stored in PArch is also in PXArch and

116

viceversa. The same applies to the civil engineer, using the drivers CEng_to_XCEng, and
XCEng_to_CEng to switch between the files PCEng and PXCEng.

There exist a global XML schema (DTDg) encompassing both DTDArch and DTDCEng. More
precisely, an XML file which is valid for DTDArch and DTDCEng is valid also for the global
schema DTDg.

A global representation of a project PXg can be mapped to PXArch by means of a “filter”
Xg_to_XArch: this is a semantic transformation, consisting in the extraction of a Perspective from
a global representation. On the other side, we need a “semantic merger” XArch_in_Xg: this more
difficult task requires to merge PXArch in PXg and generate a new version of the project P’Xg. The
basic rule of this task is the following:

• for all the features (slot value pair) in the Perspective-a which are changed from PXg to
PXArch, replace the value in PXg with the corresponding one in PXArch.

As a first step to achieve this target, we have developed an XML representation of the project,
and have partially developed the mapping procedures (drivers) for very simple and basic
structures (semantically shared by the two environments) from/to different target software
environments:

• KAAD 4

• AutoCAD.

We also are cooperating with another research group in structural engineering, and have started
the connection to MetaKAAD of the system SISA, a prototype software tool to design and define
load-bearing structures of a simple residential building.

5.1 Additional Features of the System

Beside those considered before, additional features that have been achieved are that each actor,
while importing from the shared area his/her own Perspective, can easily check:

• which objects/features have been changed, and which are managed by whom
• none of the features managed by himself have been changed by others

Also, the approach based on features and Perspectives may lead to the concept of (digital)
signature of the Perspective of a project, where each actor may digitally sign only the set of
features he/she is responsible for, and recognize as unchanged all the features in his/her
Perspective even after other actors has changed the project.

6. Conclusions

The paper illustrates how most of the obstacles, intellectual property (copyright) in particular,
standing in the way of the spread of the collaborative design paradigm, can be overcome, at least
in theory. The objection to the access by others to one’s own KB is a false problem in that all the
actors query directly only the shared data, structured by XML. Knowledge is exchanged through

4 See note 3 on page 114.

117

specific Perspectives restricting the field of action on the objects by specific actors - Dominus and
User – which are variable in time. The knowledge notified is only a “restricted environment” of
SKBi of the actor(s), which are insufficient for inferring open environments (metarules).
Furthermore, it is queried through the Perspectives which virtualize the inclusion of parts of KBs
in other KBs.

The MetaKnowledge of each actor is encapsulated in Relation Structures separated from the KBs
of the Environmental and Technological Domains so that direct access to them can be excluded.
The signature of each design Perspective allows the choices made by the various actors with
regard to the tasks assigned to them to be certified. This same digital signature signifies the
impossibility of tampering with the work performed, ensuring that the actors involved take
responsibility for their work.

This is the state of research as confirmed by the results of the degree theses presented and by the
prototype developed. The experience gained through the evolution and reflections of the
MetaKAAD system presented in the preceding Symposium, leaves several lines of development
open.

General conclusions may be drawn to the effect that in this way Knowledge and not
MetaKnowledge is shared, “rules of good building practice” is shared and not rules that define
when and how to apply the “rules of good building practice”.

Acknowledgments

The research was funded by MIUR (Ministry of Education, the University and Research): Project
of Research of National Interest 2002: “An integrated Product/Process model of support to
collaborative design in building".

References

Carrara, G. and Fioravanti, A.: 2003, Needs Requirements Performances Vs Goals Constraints
Values, in Collaborative Architectural Design, Proceedings of SIGraDi 2003 Conference,
Rosario.

Carrara G. and Fioravanti A.: 2002, ‘Private Space’ and ‘Shared Space’ Dialectics in
Collaborative Architectural Design, Collaborative Decision-Support Systems, Focus Symposium
and InterSymp-2002 Conference Proceedings, Baden-Baden, pp. 27-44.

Carrara, G. and Fioravanti, A.: 2001, A Theoretical model of shared distributed Knowledge bases
for Collaborative Architectural Design, SKCF ’01 Conference Proceedings, 17-18 Dec. 2001,
Sydney.

Carrara, G, Fioravanti, A, Novembri, G: 2001, Knowledge-based System to Support Architectural
Design, in H Penttila (ed.), Architectural InformationManagement, Proceedings of eCAADe 01
Conference, Helsinki, pp. 80-85.

Carrara, G, Fioravanti, A, and Novembri, G: 1997, An Intelligent Assistant for architectural
design studio, eCAADe 1997 Conference, Wien, a Web page i n
http://info.tuwien.ac.at/ecaade/proc/carrara/carrara.htm

118

Carrara, G., Confessore G., A. Fioravanti, G. Novembri. 1995, "Multimedia and Knowledge-
based Computer-aided Architectural", in B. Colajanni and G. Pellitteri (eds), Multimedia and
Architectural Disciplines, Proceedings of the 13th eCAADe Conference, Palermo, Italy.

Carrara, G, and Kalay, YE: 1994, Past, present, future: process and Knowledge in Architectural
Design, in G Carrara and YE Kalay (eds.), Knowledge-Based Computer-Aided Architectural
Design, Elsevier Science Publishers B.V., Amsterdam, pp. v-vii, 147-201, and 389-396.

Eastman, C.M.: 1998, Editorial, Automation in Construction, 7(6), 431-432.

Eastman C.M., Jeng, T.S., and Chowdbury, R.: 1997, Integration of Design Application with
Building Models, in R. Junge (ed.), CAAD Futures 1997, pp. 45-59.

Galle P.: 1995, Towards Integrated, ‘Intelligent’, and Compliant Computer Modeling of
Buildings, Automation in Construction 4(3), 189-211.

Gero, J. S. and Reffat R. M.: 2001, Multiple representation as platform for situated learning
systems in designing, Knowledge-Based Systems, 14(7), 337-351.

Harold, R.R.E. and Means W.S. 2002. XML in a Nutshell, O'Reilly & Associates Inc.

Kavakli, M.: 2001, NoDes:kNOwledge-based modeling for detailed DESign process – from
analysis to implementation, Automation in Construction, 10(4), 399-416.

Kim, I., Liebich, T. and Maver, T.: 1997, Managing design data in an integrated CAAD
environment: a product model approach, Automation in Construction, 7(1), 35-53.

Papamichael K., La Porta, J., Chauvet, H., Collins, D., Trzcinski, T., Thorpe, J. and Selkowitz, S.:
1996, The Building Design Advisor, Design Computation: Collaboration, Reasoning, Pedagogy,
Proceedings of ACADIA '96 Conference, Tucson, Arizona, pp. 85-97.

Pohl, J., Chapman, A., Pohl, K.J.: 2000, Computer-Aided Design Systems for the 21st Century:
Some Design Guidelines, 5th International Conference on Design and Decision-Support Systems
for Architecture and Urban Planning, Nijkerk, The Netherlands, August 22-25.

Pohl, K.J.: 2002, The Underlying Design Principles of the ICDM Development Toolkit, in
Collaborative Decision-Support Systems, Focus Symposium and InterSymp-2002 Conference
Proceedings, Baden-Baden, pp. 51-58.

Rosenman, M A., and Gero, J S.: 1996, Modelling multiple Perspectives of design objects in a
collaborative CAD environment, Gero, J.S., (guest ed.), Special Issue: Artificial Intelligence in
Computer-Aided Design, Computer Aided Design, 28(3), 193-205.

Wix, J.: 1997, ISO 10303 Part 106, BCCM (Building Construction Core Model) /T200 draft.

119

Knowledge Management and Organizational Memory in CAS Environments

A. Killing

K+H Architects, Stuttgart, Germany

a.killing@kh-architekten.de

Abstract

This paper addresses aspects of knowledge management and organizational memory within a
complex adaptive system (CAS). The increased connectivity and complexity within such an
environment creates an open system that displays rarely clear cause-effect-relationships. Due to
this characteristic it becomes increasingly difficult to maintain accurate knowledge and
representation of the system’s properties and behavior generating mechanisms. Considering the
dynamic change of the environment an organization is operating in, the paper questions the long-
term validity of knowledge that is based on the assumption of a closed system, i.e., clear
cause–effect links. The author draws attention to the basic prerequisites of applicable data
interpretation and how these correspond to a CAS-environment.

This paper suggests that organizational memory needs to adjust the way it stores and represents
knowledge that was generated from past experiences. Attention is drawn to the fact that
interpretation of information is closely linked to human factors, as knowledge and perception of
the interpreting individual, or even hard-coded rules and relationships within software
applications. As results of the interpretation process may vary significantly under dynamic
change of these factors, the paper proposes a knowledge management approach that allows
simultaneous representation of two or more conflicting interpretations of one set of given
information and describes its possible impact on the structure of organizational memory and
decision making. The paper concludes with an outlook on limitations and assets of a behavior
based approach to organizational memory structures.

Keywords

organizational memory, knowledge management, complex adaptive systems, analogy making,
pattern recognition, implicit and explicit knowledge

120

Introduction – Definitions and Aspects of Organizational Memory

“Those who cannot remember the past are condemned to repeat it”

(George Santayana)

Reduced to its basic essence, the well-known game “memory” requires the human brain to
interpret the picture on the flipped card as an analogy to a picture that has been seen before in
another place and to remember, where this place was. Unfortunately, real life is a little bit more
challenging. Since identical situation only rarely occur, analogy-making requires to reduce the
essence of an occurring situation to a set of key characteristics. This is the point where memory
becomes a difficult subject. It implies that besides remembering the past, an essential part is to
perceive two non-identical objects (or situations) as being the same at some abstract level. The
decision, which characteristic of the content is considered to be worthwhile to be represented on
an abstract level is closely linked to the intellectual capabilities of the perceiving individual.

This insight may lead to the question what memory really is. Is it the place where information is
stored (like a CD-ROM), or is it the ability to store and meaningfully retrieve information and
relationship later. Translated to IT-terminology the question may be: Is memory software or
hardware. In order to identify different approaches to organizational memory, it is essential to
define and describe what exactly this memory is going to store and process: the organizational
knowledge.

Aspects of Organizational Knowledge

Osterloh and Wübker (1999) distinguish to types of knowledge: Explicit knowledge and implicit
knowledge. To understand these to types of knowledge and their impact in an organizational
context, it important to define key characteristics by drawing analogies to different levels of
knowledge the human brain deals with in daily life.

Explicit knowledge can be represented in written form. It is easy to copy and distribute.
Therefore, it is easy to store and easy accessible. On the other side, this type of knowledge is
static and closely linked to given set of surrounding conditions under which this knowledge is
valid. If these conditions change, explicit knowledge has to be updated and maintained. Translated
to daily life’s challenges for a human brain, explicit knowledge may be the ability to use a certain
version of a software application. This type of knowledge is easy to represent in a manual.
However, if the next version of the application is available, the capability of using this software
has to be updated. In an organizational context, this type of knowledge is usually provided by
manuals, guidelines and written statements. It also is easy to process with information
technology.

In contrast, implicit knowledge is provided by individual skills and experience. The key
characteristic of this type of knowledge is, that it is hard to represent and store. The structure is

121

strongly connected to the cognitive rules of the perceiving individual. On the other hand, by its
nature, implicit knowledge is subject of constant change. Since the perception adapts constantly
to new insights, the resulting knowledge is hard to represent. Using the aforementioned example
of knowledge in software applications, implicit knowledge may enable the human brain to
intellectually understand structures by analyzing repetitive occurring patterns in, lets say, the
user interface of several software applications. In an organizational context, this type of
knowledge represents a high value, because the resulting competence cannot be imitated easily.
Moreover, it belongs inherently to the people, who work for an organization.

Current Developments in Organizational Memory and Knowledge Management

In order to minimize the risk that essential parts of the organizational knowledge are linked to
individuals, organizations seek for methods to transform this value to explicit knowledge and
store it where it is long-term accessible. Organizational memory systems (OMS) used to be
focused on the development of tools that will enable massive information transfer within an
organization. Since these systems face the problem of availability of the right information at the
right time in the right place, representing context occurred as a crucial issue that facilitates
appropriate information retrieval and understanding (Conklin, 2001). This approach faces
difficulties, because OMSs require additional documentation effort with no clear short-term
benefit, and often do not provide an effective structure to the mass of information collected in the
system (Boy, 2001).

Referring to the earlier identified types of organizational knowledge, the aforementioned tools
only provide the storage and display of explicit knowledge. The representation and management
of implicit knowledge mainly relies on strategies that aim on effectively developing and utilizing
the human capital in an organization. Pohl (2003) has described, that decentralization and
concurrency represent principal characteristics of knowledge management within an organization
and emphasizes the goal of creating an environment that builds relationships for the purpose of
maximizing interaction, diversity, responsiveness, and flexibility.

Complex Adaptive System Environments as Challenge for Organizational Knowledge

A Complex Adaptive System environment rarely displays the linearity that is required to
maintain an applicable knowledge base. Moreover, the non-linear pattern of behavior reduces
both the predictability of the system and the manageability of accurate knowledge. Mainly, this
property is due to the fact, that our environment the compounding parts itself are open systems,
that constantly interact and react to even small incentives and impacts. Self-organization and
constant adaptation diminish the ability to retrieve and store easily applicable organizational
knowledge. Specific knowledge about the surrounding environment is hardly maintainable on an
up-to-date level, because significant details or relationship may change in high frequency.

122

Limitations of Individual and Organizational Knowledge

The capabilities, to recognize pattern in an constantly changing environment are dependent on the
individual history and experience of an individual, a group, or an organization. An organization
that employs feedback mechanisms to adjust its performance generates its identity through the
history it has experienced (Stacey, 1995). Consequently, this historical path impacts the way of
creating analogies to past experience. This insight offers two important statements. (1)
Organizations have to develop an organizational memory that provides a holistic base for this
process of pattern recognition. (2) The choice of key parameters that describe patterns is based
on the individual history of the organization.

This again means that the same event, process, or condition can be perceived and memorized in
different ways. Complex adaptive systems employ mechanisms of pattern recognition to
anticipate the future (Pascale, 1999). In contrast, Logic deduction is considered to have only
limited representation capabilities because it implies the existence of a closed system and clear
cause-effect links. Consequently, systems have to employ heuristic methods that are closer to
intuitive reasoning than to deterministic deduction. The occurrence of recognizable patterns
produces probabilistic assumptions rather than deterministic predictions about the future. In an
organizational context, pattern categories may include customer patterns, product patterns,
organizational patterns, and mega patterns (Slywotzky, Mundt and Quella, 1999).

Recognizing the ambiguity of perception is essential because it explains why pattern recognition
can hardly deliver deterministic results: Different the different ways of memorizing an event react
to different analogies. Consequently, an organization has to provide a frequently executed
feedback mechanism to both support and monitor its pattern recognition capability. Finally,
efforts in creating an organizational memory have to admit that perception, recognition, and
reasoning can only produce probabilistic results with limited long-term validity.

Ontology: Relationship as Key Characteristic in Representation

In order to achieve a higher level of understanding with some predictive capabilities, it is
necessary to create models that are built to imitate the way of functioning of the real world
environment in a manageable scale. To virtually represent the real world environment in a
computer based model, information structures have to consider not only the objects an their
properties. They also must display relationships in-between the single elements of a system.
This type of information structure consists of software agents that interact with other agents on
the base of hard-coded rules. Since a system is directed rather by relationships than by
characteristics of its elements, an ontological model is able to display system dynamics that
emerge from the complex property of a system. However, this approach also implies that all
relationships within the system are known and can be described by rules. External relationships
that may also impact the system behavior may be neglected if their influence is considered to be
seemingly small.

123

Model-Based Approach to Organizational Memory

The model-based approach to represent a system can be characterized as trying to build as
complete and accurate an internal model of the system as possible and then use this model as the
basis for all plans and actions. The elegance and value of internal models has been stated by Craik
(1943):

If the organism carries a small scale model of external reality and of its own possible
actions within its head, it is able to try out various alternatives, conclude which is the best
of them, react to the future situations before they arise, utilize the knowledge of past
events in dealing with the present and the future, and in every way to react in a much
fuller, safer, and more competent manner to the emergencies which face it. (p.61).

This statement makes three important assumptions about the properties of a model. (1) Models
are small-scale in terms of effort that has to be undertaken to build and maintain their accuracy.
(2) Models display predictive capabilities, because the rules and relationship that are the result of
past experiences apply also for the future. (3) Models are synthetic. Therefore, their
functionality relies basically on how their creator perceives and understands the relationships of
the environment the model has to represent. Problems with this model have been identified in
their practical application and their validity (Chown, 1999) because the development of a
dynamic model is difficult to achieve. Furthermore, the relevance of the inherent knowledge and
rules has to be examined constantly in order to maintain the accuracy of the model.

Behavior-Based Approach to Organizational Memory

The difficulty of modeling and representing CASs is caused by the apparently contradictory
ambiguity of their characteristics. Because the science of complexity allows the parallel
evolvement of contrary theories, common models that represent deterministic processes in an
environment with limited variety tend to fail. One logical consequence would be to abandon the
usage of models since their predictive capabilities are seemingly small. The alternative is the so-
called behavior-based approach (Chown, 1999). It suggests the use of cognitive maps that are
rather a product of experience and implicit knowledge than of precise measurement.

In contrast to approaches that mainly rely on a model displaying real world systems, the
behavior-based approach assumes that the behavior of an open system emerges from multiple
complex interactions. Since CASs employ positive feedback mechanisms, the process of
emergence is not reversible. Consequently, it is not possible to isolate and identify a specific
cause for a displayed effect. This again means, that a meaningful representation of the system’s
way of functioning is not derivable from its behavior patterns. If this is assumption applies,
organizational memory has to focus rather on storing and representing patterns of behavior rather
than patterns of relationships.

124

As the displayed behavior does not uncover the underlying interactions that have generated the
prevailing pattern, organizations will have to maintain parallel interpretations to explain occurring
behavior. This may – under specific condition - demand commitments, that are comparable to the
effort to maintain the accurate structure of a model-based ontology. Constant monitoring and an
evolution-like competition determine whether one or the other interpretation meaningful
represents the essence of the environment. However, this approach does not suggests, how this
can be achieved by the explicit knowledge base of an organization. The holistic perception of
behavior and the potential to interpret surrounding conditions and subsequently identify
analogies to past behavior patterns seems to be part of the implicit knowledge. This type of
knowledge has been identified as a typical potential of the human brain.

Conclusions

This paper has discussed issues of organizational memory and the challenges that result out of
the characteristics of a Complex Adaptive System environment. It has identified the different
roles in the human-computer collaboration by defining different types of knowledge. Future
developments in Information Technology will move the borderline between these types of
knowledge: The share of explicit knowledge within an organization will increase, as sophisticated
software applications will enhance their ability to represent complex contents within a computer.
The human contribution to organizational memory will translate computer-based knowledge to an
organizational context. As the capability to draw analogies and understand patterns is closely
linked to the individual skills of individuals, organizations will have to adapt to management
practices that are more concerned to fulfill the requirements of these individuals.

Bibliography

Chown, E. (1999, Winter). Making Predictions in an Uncertain World: Environmental Structures
and cognitive Maps. Adaptive Behavior, 7 (1), 17-33.

Osterloh, M., and Wübker, S. (1999) Wettbewerbsfähiger durch Prozeß- und Wissensmanagment.
Wiesbaden: Dr. Gabler.

Pascale, R. T. (1999, Spring). Surfing the Edge of Chaos. Sloan Management Review, 40 (3), 83-
94.

Pohl, J. (2003) The Emerging Knowledge Management Paradigm: Some Organizational and
Technical Issues. Preconference Proceedings collaborative Decision-support Systems
InterSymp – 2003, Baden-Baden, Germany, 11-26.

Slywotzky, A. J., Mundt, K. A., and Quella, J. A. (1999, June). Pattern Thinking. Management
Review, 32-38.

Stacey,R. (1996, May/June). Management and the science of complexity: If organizational life is
nonlinear, can business strategies prevail? Research Technology Management, 39, 8-11.

125

Collaborative Project Delivery

Barry Jones, Ph.D

Construction Management Department, College of Architecture and Environmental
Design, California State Polytechnic University, San Luis Obispo, California

Introduction

The construction industry, as we see it now in the 21st Century, is still characterized by a
fixed price project delivery system that often brings an adversarial culture to the project
rather than maximizing client value.
However, action on the recommendations from key Construction Industry strategic
reports has begun to have some effect on changing the practice of project delivery. The
reports include the U.S. Construction Industry Institute (CII) report ‘‘In Search of
Partnering Excellence’’ (CII 1991), and the initiatives for change in construction set out
in the ‘‘Joint Review of Procurement and Contractual Arrangements in the United
Kingdom Construction Industry’’ (Latham 1994) and the Construction Task Force report
(Egan, 1998).
The Chartered Institute of Building that represents the construction industry in the UK
and has a membership worldwide is also driving change through their “Accelerating
Change” strategy1. A recent press release from the CIOB dated April 2004 indicates the
commitment of the UK Government to this process “Construction Act set for Sir Michael
Latham review Construction Minister, Nigel Griffiths has appointed Sir Michael Latham
to embark on a review into Part II of the Housing Grants Construction and Regeneration
Act 1996……. The provisions in the Construction Act provide the basis for a fairer
payment culture in construction and more effective project delivery. I want to make sure
we continue to bring about improvements in practices through all means available and
with the support of all sectors of the industry. Sir Michael’s appointment will help make
this happen."

With larger multi-national clients of construction services the call for greater value is one
echoed around the world. For instance the construction industry in Singapore is similarly
faced with a multitude of problems which have affected its performance. To address these
multi-faceted problems, a major review of the construction industry was initiated in May
1998. This review, which involved captains from all segments of the construction
industry both in the public and private sectors, resulted in the release of the Construction
21 (C21) Report - a blueprint to chart the future directions of Singapore's construction

1 In the last 3 years the M4I demonstration projects: Represent 3% of industry output; Have killed ZERO people rather than 8; 30%
better on Time and Cost predictability; 32% better on Quality; 29% higher productivity; 33% higher Client satisfaction; 35% higher
profitability. Ref: Alan Crane, Chair, Rethinking Construction
In the last 3 years the M4I demonstration projects:77% report they have learned or improved partnering skills, supply chain
management or procurement processes; 60% report improved ability to plan projects and achieve the plans.
DTI PII funded research led by a leading contractor

126

sector. Recommendations of the Report are now being implemented by both the public
and private sectors. Among other things, the C21 Report identified "An Integrated
Approach to Construction" as one of the several strategic thrusts that the industry needs
to embrace to achieve greater synergy, higher productivity and quality.

The core concern of these reports was the ability of the International construction
community to deliver a high quality product to its clients in the 21st Century. The Latham
Report was seen by many as a turning point for the construction industry, radically
transforming relationships between clients and contractors.

Targets Set for the Construction Industry

The Report recommended that contracts should be founded upon principles of fairness,
mutual trust and teamwork with greater synergy of complementary roles of the different
participants. The improvements targets (Table 1) set are:

Table 1 - Construction Sector Performance Improvement Targets set to be achieved by 2000 - USA and UK

Construction Sector Performance USA UK

Target Rank Target

Total Project Delivery Time Reduce by 50% First Reduce by 25%

over 5 years

10%/year

Lifetime Cost (Operations Maintenance Energy) Reduce by 50% Second

Productivity and Comfort Levels of Occupants Increase by 50% Fifth = Improve by 20%

Occupants Health and Safety Costs Reduce by 50% Sixth

Waste and Pollution Costs Reduce by 50% Fifth =

Durability and Flexibility in Use over Lifetime Increase by 50% Third

Construction Worker Health and Safety Cost Reduce by 50% Fourth

Costs Reduce by 30%

over 5 years

10%/year

Construction Quality Zero Defects

Building defects Reduction

20%/year

The source information: USA – Wright Rosenfield Fowell, 1995; UK - The Engineering and Physical Science Research Council’s
Innovative Manufacturing Initiative Programmed.

127

With these recommendations and targets in mind, and projects evermore complex,
uncertain, and pressed for speed, there is a need for a project-based production system to
maximize value and minimize waste. The challenge requires a restructuring of the project
delivery process to find better ways in which all the key participants can work together,
with the client’s interests being central to the process. The new system must allow early
consideration of issues such as buildability, construction quality and safety,
environmental performance, maintainability, life cycle costing, use of IT for project
integration etc. With traditional delivery systems, at the design stage, inputs from
contractors and suppliers are seldom sought, very often leading to frustration, subsequent
re-work and delays in project execution when the expectations of the designers and
contractors do not meet. At the extreme, clients, consultants and contractors may end up
in confrontation or litigation.

Changing the Mindset

Architects, engineers and construction managers are trained and work in different ways.
Attraction to their individual professions and career paths can often be traced back to
their different personality types. The architect as the social artist, the engineer as the
mathematician proving structures will stay upright and the construction manager as the
team-minded resource co-coordinator, the people person. Over many decades these
differences in mindset have caused the project process to falter rather than advance for
the common good of the project and client. All must change their mindset to create a
positive constructive project innovative environment.

You can recognize a company with an innovation mindset by the way employees
interfaces with each other. They treat each other with respect, admiration, and
cooperation. They smile. They laugh. They express consideration and thoughtfulness to
each other. They listen. They focus on the benefits desired by consumers rather than on
their own personal gain. They come to work with an optimistic enthusiasm because they
believe that what they do each day really does count. They focus on the future rather than
on the past. They exude self-confidence, possess a healthy self-esteem, and believe in
their own capabilities and strengths. They have faith in innovation and in each other.

An innovation mindset is an attitude that should be adopted throughout an organization
by virtually every employee, from the CEO to hourly workers. While a mindset has to
exist in individuals, it can spread and be adopted and nurtured by others. It is a pervasive
aura which has a spirit of its own. This mindset stimulates and motivates individual
employees, as well as teams, to holistically endorse a belief in creating newness.

Identifying innovation values and new product team norms to guide behavior and
communications among team members is crucial. Determine individual team member
goals, hopes, fears, and aspirations are essential. You need to have each individual
member discuss with the entire team his or her reasons for participating in the
development of new project. Each one of them needs to articulate what he or she wants to
get out of it -- personally. Companies that allow teams to invest adequate time up front to

128

do this, and are open to the inputs made, help to solidify and empower new
product/project teams.

Partnering - Design Build

Advocates know the primary benefits of teamwork versus an adversarial relationship,
which enable decisions to be made in a much timelier manner, and of course, dispute
avoidance, for the sake of savings of time and money during construction. Over the past
decade two delivery strategies that have been widely adopted by construction clients to
procure their new buildings and structures include partnering and design/build.

The partnering philosophy has been a major concept in the worldwide effort of creating
significant improvements to the construction industry and changing the mindsets of
participants to the project process. Since the U.S. Construction Industry Institute (CII)
report “In Search of Partnering Excellence” (CII 1991), and the initiative for change in
construction set out in the “Joint Review of Procurement and Contractual Arrangements
in the United Kingdom Construction Industry” (Latham, 1994) and the Construction Task
Force report (Egan 1998), partnering has begun to have some positive effect.

The US Army Corps of Engineers through ‘The Project Partnering Process’ creates a new
team building environment which fosters better communication and problem solving, and
a mutual trust between the participants. These key elements create a climate in which
issues can be raised, openly discussed, and jointly settled, without getting into an
adversarial relationship. Through this process of teamwork and problem solving on a
construction project, the Corps goals are in the areas of Safety, Quality, Schedule,
Budget, and Disputes. They want the quality of the work to be right the first time, the
project to be completed on time, the final cost to be within budget, and disputes/litigation
to be minimized. The goals of the contractor are very similar, thus the process benefits
both parties through the teamwork and pursuit of mutual goals. The use of formal and
informal partnering techniques now has widespread use across the Corps during the
construction phase of our projects, and has been adopted by many Federal, states, and
local agencies based on the Corps success. They see partnering at the project level, or at
any level for that matter, brings a synergy to the project delivery team, which is
unmatched in effectiveness and benefits to projects, and ultimately to customers/users of
constructed facilities.

The C21 Report has identified Design-and-Build (D&B) as a form of procurement which
can play a positive role in encouraging integration among the project team members.
Compared with the traditional Design-Bid-Build procurement system, D&B will foster
the integration of the expertise of the consultants and contractors at an early stage to
incorporate build able design and more innovative construction methods to save cost and
labor, minimize wastage etc.

In Australia and Japan, D&B projects account for about 60% and 50% of projects
respectively, in the UK around 40%. However, in the USA the figure is much smaller at
about 20% and in Singapore, the D&B method of procurement is still not the preferred

129

choice especially amongst the private sector clients and accounts for only about 14% of
total projects. If more integration in the project delivery processes is the way to go, there
is then a need to look at ways and means to promote the D&B method and to eliminate
practices which inhibit the adoption of such a method.

Building a Collaborative Problem Solving Environment

With the above drive for change in project delivery it led the author’s research direction
to find a way in which all participants to the construction project can input their domain
knowledge to solve collaboratively design and production problems at all stages of the
project supply chain.

The partnership environment proposed is one that fully utilizes the strengths of a multi-
agent computer environment collaborating with the various human domain experts.
During the life of the project there will exist a total problem solving environment where
the knowledge and intelligence of all domain-contributing agents can be fully employed.
Better opportunities therefore exist to concurrently view the effect of decisions that
impinge on the many domain participants. All contributors are collaboratively drawn into
the problem solving process. Time is saved because a concurrent collaborative problem
solving approach is adopted rather than the traditional sequential problem solving
approach.

Experts can still be geographically or functionally distributed; this also presents the
opportunities to take advantage of recent technology in communication systems (co-
operative distributed, broad band, etc.). The complexities of design and production can be
broken down over numerous agents; problems can be decomposed to a level at which
computer agents can contribute essential knowledge. Systems architecture will be
designed to link relational databases of essential domain knowledge. The environment
proposed could be extended to continually monitor and assist throughout the life cycle of
construction projects.

Figure 1 (appendix 1) outlines to problem solving environment proposed. Figure 2
(Appendix 2) portrays how the ‘family’ of Construction Management agents might
devolve the problems in partnership with families of Architectural, Engineering,
Planning, Client, Electrical and many other domain representative agents all collaborating
to solve the problems effecting the project.

The Problem Solving Environment in Action

Within the computer agent environment, problem solving is seen as a co-operative
process with mutual sharing of information to produce a solution. Solutions result from
an assembly of construction objects, e.g. bricks, walls, floors, windows, etc., these are
assembled by human and computer agents to satisfy project specific criteria, e.g. quality,
environmental, cost, safety, etc. Objects are information entities only whereas computer
agents are active and have knowledge of their own nature, needs and global goals.
Objects are accessible by agents but cannot take action. Having this ability to view the

130

artifacts used in the project model as a series of objects, which have implicit attributes
and features, gives scope to analyze the design with regard to such aspects as
manufacture, constructability, cost, quality, safety, etc., an almost unlimited definition of
machine agents could be specified that are caretakers of knowledge pertaining to most of
the constraints and criteria related to a new building project.

In such an environment the design facilitator's role would be one of searching, evaluating
and modifying the current design and production state with the support of different
domains computer agent families (Jones, 1994). In this process the various expert human
agents would direct and guide the efforts of all computer agents to advance the current
state towards a best solution that is acceptable to all domains agents. The role of the
human co-coordinator would be that of principal long term or strategic planner while
agents would focus mainly on short-term activities, and therefore should be endowed
with knowledge that enables them to only execute short term and reactive plans. The
characteristics such computer agents would possess are:

(a) Programmed with appropriate problem solving protocols.

(b) Intelligience2 in that they possess the capacity to plan their own actions.
Intelligent agents would therefore have implicit domain knowledge,
knowledge of their own needs, knowledge of global goals, the ability to
communicate and the ability to take action. They would also have access to
objects, which are information entities, but unlike agents, cannot take action.

(c) Belong to domain families, each family of computer agents and objects would
represent each domain and their problem solving activities associated with the
design and production problem solving of that specific project. As other
problems arise so the agent environment would extend or should the project
be of a different construction then a new agent family would be appropriately
designed.

(d) The ability to decompose the problem to a level it can be solved including
recognition of the requirement to seek collaboration from other different
domain agent families that collectively are required to solve the problem.

(e) Operate in a narrow domain providing support to requests for assistance.
Agents would range from simple to complex processing units each rationally
working toward a single global goal or towards separate individual goals that
interact. Acting independently in a self-regulating manner their common
purpose is to change the current design state towards meeting a common set of

2 Intelligence in the context of this work implies that the design system has some means that allows it to anticipate the data needs,
information needs or knowledge needs of the human designer. The system would act as an intelligent assistant to the evolving design,
aiding the designer and freeing them from being overwhelmed with untimely knowledge. Providing such assistance to all problem
solvers in the design environment requires an understanding of the various participants’ knowledge, factors that constrain their
decisions and criteria they work under. Pohl (1993) called this an Intelligent Computer Assisted Design System (ICADS). The ICADS
approach is supported in several working models (ICADS-DEMO1 (Pohl,1989), ICADS-DEM0 2 (Pohl, 1991), AEDOT (Pohl, 1992).
These have provided computer scientists with a useful test bed for the development of a body of knowledge relating to software and
hardware computer architecture, theoretical concepts and technical implementation issues.

131

goals. The goals are set by the human agents with advice from various
autonomous agents that include agent representation of the client.

(f) Agents would use their local expertise and available resources to work in
parallel on different or co-coordinating tasks to arrive at a solution in the
following ways:

(i) Act as co-operative search agents that liaise with knowledge bases
in the search for alternative solutions.

(ii) Act as evaluators and solution proposes to express opinions about
the current state of the design solution.

(iii) Give continuous background monitoring and evaluation of the
evolving design solution.

(iv) Designed to have implicit domain knowledge, knowledge of their
own needs, and knowledge of global goals, the ability to communicate
and the ability to take action.

(v) Each agent would be represented at the level of detail at which the
design facilitator or human agent wishes to reason about the project
problem solving system.

A coordinator should be capable of invoking a procedure for resolving conflict conditions
based on consultation. The agents use their specialized expertise and available resources
to work in parallel on different or coordinating tasks to arrive at a solution concurrently.
There is an inevitable need for interaction between all the participants who input to
complete the final project. Pohl (2000) states that the computer system should reflect the
more realistic situation of a project team, one that interacts by co-operation and
persuasion. Complete families of computer-agents that represent a particular domain can
be built e.g. architect, interior designer, structural engineer, landscape architect, safety
manager, quality manager, environmental manager, mechanical and electrical engineer,
construction manager, project manager, etc. and within each family specific agents would
monitor and offer assistance regarding criteria and constraints imposed in the areas of
environmental, quality, safety, cost, production time, etc. There could be a ‘Quality’
agent residing in a number of domains i.e. Architect, Construction manager, Project
Manager, Quality manager, each would be representing the criteria and constraints
related to quality of that domain.

Conclusion

The author has portrayed and conceptualized a collaborative problem solving system that
will facilitate a project delivery based on integration between all the key participants to
the project. Appendix 3 indicates the future in project delivery that gives the client value
as proposed by the various reports and strategies touched on in this paper.

132

References

Audit Commission. (1997). Rome wasn’t built in a day, Belmont Press, Northampton.

Brooke, K. L., and Litwin, G. H. (1997). ‘‘Mobilizing the partnering process.’’ J. Mgmt. in Engrg., ASCE,
13(4), 42–48.

Construction Industry Board. (1997). Constructing success, Thomas Telford, London.

Construction Industry Council (CIC). (2000). ‘‘A Guide to Project Team Partnering.’’ London.

Construction Industry Institute (CII). (1991). ‘‘In search of partnering excellence.’’ Spec. Publ. 17-1
Prepared for Constr. Industry Inst.,Partnering Task Force.

Construction 21 (C21) Report - a blueprint to chart the future directions of Singapore's construction

Egan, J. (1998). ‘‘The report of the Construction Task Force: Rethinking construction.’’ Department of the
Environment, Transport and the Regions, London.

Jones. B.K (1998) “A Model for Collaborative Engineering in the Construction Industry”, Thesis for
Doctor of Philosophy, Dept. of Civil and Environmental Engineering, University of Southampton,
Southampton, UK.

Jones.B.K. and M.J.Riley (1995) Collaborative Construction Agents, ASCE, 2nd International Congress on
Computing in CE, Atlanta, USA, June 1995, pp 1316-1323. International Conference, Technical paper and
presentation.

Jones.B.K. and M.J.Riley (1995) Autonomous Construction Agents in an ICADS environment, ASCE,6th
International Conference in Civil and Building Engineering, Berlin, Germany, July 1995, pp 407-412.
Technical paper and presentation.

Jones, B.K. and M.J. Riley (1994) Construction Problem Solving in a Co-operative Distributed Agent
Centered Environment, 1st congress on Computing in C.E. Washington D.C.

Larson, E. (1997). ‘‘Partnering on construction projects: A study of the relationship between partnering
activities and project success.’’ IEEE Trans. on Engrg. Mgmt., Piscataway, N.J., 44(2), 188–195.

Latham, M. (1994). Constructing the team, Her Majesty’s Stationery Office, London.

Pohl, J., L. Myers, A. Chapman, and J. Cotton (1989). "ICADS: Working Model Version 1," Technical
Report, C,ADRU-03-89, CAD Research Unit, Design Institute, School of Architecture and Environmental
Design, Cal Poly, San Luis Obispo, California.

Pohl, J., L. Myers, A. Chapman, J. Snyder, H. Chauvet, J. Cotton, C. Johnson and D. Johnson (1991).
"ICADS Working Model Version 2 and Future Directions," Technical Report, CADRU-05-91, CAD
Research Center, Design Institute, College of Architecture and Environmental Design, Cal Poly, San Luis
Obispo, California.

Pohl, J., L. Myers, J. Cotton, A. Chapman, J. Snyder, H. Chauvet, K. Pohl and J. La Porta (1992). "A
Computer-Based Design Environment: Implemented and Planned Extensions of the ICADS Model,"
Technical Report, CADRU-06-92, CAD Research Center, Design and Construction Institute, College of
Architecture and Environmental Design, Cal Poly, San Luis Obispo, California.

Pohl,J and L. Myers (1993) A Distributed Cooperative Model for Architectural Design, CAD Research
Centre, Cal. Poly, San Luis Obispo, CA.

133

Pohl,J., A Chapman,. K Pohl (2000) Computer-Aided Design Systems for the 21st Century: Some Design
Guidelines, Collaborative Agent Design (CAD) Research Center, San Luis Obispo, CA.

Pohl (2001) Information-Centric Decision-Support Systems: A Blueprint for ‘Interoperability’, Office of
Naval Research: Workshop on Collaborative Decision-Support Systems, Quantico, VA, June 5-7, 2001

Puddicombe, M. S. (1997). ‘‘Designers and contractors: Impediments to integration.’’ J. Constr. Engrg.
and Mgmt., ASCE, 123(3), 245–252.

Towill, D. R. (1997). ‘‘Successful business systems engineering.’’ IEE Engrg. Mgmt. J., 7(1), 55–64.

Wright, R. N., Rosenfield, A. H., and Fowell, A. J. (1995). ‘‘National Science and Technology Council
report on federal research in support of the U.S. construction industry.’’ Washington, D.C.

134

Appendix 1
Figure 1 – Interdisciplinary Collaborating Agents

Architectural
Agents

Construction
Agents

SPACE
ENCLOSURE
DAYLIGHTING
FIRE
SECURITY
COST
UTILITY
HEAT
SOUND
QUALITY

METHOD
BUILDING SYSTEMS
SAFETY
ACCESS
SITE LAYOUT
COST
CONSTRUCTIBILITY
FABRICATION
RESOURCE

example

example

JOINTS

Engineering
Agents

example

FRAME DESIGN (STEEL)
FRAME DESIGN (R.C.)
FLOOR DESIGN
ROOF DESIGN
FOUNDATIONS
BASEMENT
CONSTRUCTIBILITY
EARTHQUAKE

INTERDISCIPLINARY

 AGENTS

OTHER AGENTS
LIFT SPECIALIST
VENTILATION
SYSTEMS
M&E
LANDSCAPE
INTERIOR DESIGN
SPECIALIST
CONSTRUCTION
ENVIRONMENTAL Fig 1

135

Appendix 2
Figure 2 Computer Agent Families - Construction Management

136

 Appendix 3

Current Capital Facilities Process

Plan Design Procure Construct Start-Up

Design
Review

Scope/
Alignment

Bid/
Proposals

Submittals

RFIs

O&M
System

Project
Management

Materials/
e-Commerce

Operate
and Maintain

People/Training – Organization/Partnering/Team Building

Project Processes/TQM – Project Controls/Change Management

Contracts (Disputes Resolution)

Information Technology Systems

Owner SuppliersDesigner Constructor Operator

